Thinning + burning treatments effectively reduce fire severity

Thinning + burning treatments effectively reduce fire severity

Although fuels treatments are generally shown to be effective at reducing fire severity, there is widespread interest in monitoring that efficacy as the climate continues to warm and the incidence of extreme fire weather increases. This paper compared basal area mortality across adjacent treated and untreated sites in the 2021 Dixie Fire of California’s Sierra Nevada.

View Research Brief

View Full Article (Open Access)

Read More

Using historical aerial imagery to assess non-conifer vegetation type change under fire exclusion

Using historical aerial imagery to assess non-conifer vegetation type change under fire exclusion

Although vegetation types other than conifer forests make up the majority of burned area in California wildfires, relatively few studies quantify the drivers and patterns of vegetation change in these ecosystems. The impacts of fire exclusion on non-conifer systems remain poorly understood, and the relative influence of fuels compared to factors like climate change or type conversion on fire behavior is largely unknown. To address this knowledge gap, the authors investigated large-scale vegetation change as a possible driver of current trends in fire behavior within mixed-hardwood and shrub-dominated ecosystems in central and coastal Northern California.

View Research Brief

View Full Article

Read More

Assessing giant sequoia mortality and regeneration following high-severity wildfire

Assessing giant sequoia mortality and regeneration  following high-severity wildfire

Giant sequoia (Sequoiadendron giganteum) regeneration is reliant on local surface fires, where episodic pulses of heat desiccate and open their cones, releasing seed onto bare mineral soil. Historically, these fires were characterized as ‘mixed severity’, composed of a large matrix that burned at low or moderate severity interspersed with small forest gaps created by local high severity fire. While sequoia regeneration can flourish within these small, high severity gaps,recent ‘megafires’ have produced unprecedentedly large patches of high severity, where the majority of sequoias as killed. This research aims to help resource managers determine whether and where to replant giant sequoia after high severity wildfire.

View Research Brief

View Full Article

Read More

Where are the Sierra Nevada’s large trees and can they persist?

Where are the Sierra Nevada’s large trees and can they persist?

Identification and conservation of mature and old-growth forests has become a federal government priority.  In California’s Sierra Nevada’s most of the remaining large trees are concentrated on Forest Service and National Park Service lands. We used airborne lidar data to census large (≥30” diameter at breast height (DBH)) and very large (≥40”) trees across three large Sierra landscapes. We found that large trees are either locally absent to rare or are aggregated in stands with 8-20 large trees per acre.

View Research Brief

View Full Article

Read More

Using Stand Density Index (SDI) as a stocking guide in frequent fire forests

Using Stand Density Index (SDI) as a stocking guide in frequent fire forests

Quantification of competition levels in forest stands benefits assessments of stand health, vulnerability to stressors, and prediction of future stand dynamics. Because different forests have different carrying capacities that can be maintained given differences in site productivities, it is important to consider stocking in terms that are relative to these maximum levels. Stand Density Index (SDI) is a common metric of competition in temperate forests of Western North America, originating in 1933 and gaining widespread use within the field of forestry throughout the 20th century. The authors of this study synthesized the large body of published literature on SDI since its introduction in 1933.

Read More

Fire suppression biases fires to be more extreme

Fire suppression biases fires to be more extreme

Decades of fire suppression have increased fuel loads and fire severity, leading to the “fire suppression paradox”—by suppressing fires we make fires harder to put out in the future. However, in this study, the authors show a separate impact of fire suppression that may cause even greater increases in average fire severity than climate change or fuel accumulation.

View Research Brief

View Full Article (Open Access)

Read More

Degradation and restoration of Indigenous California black oak (Quercus kelloggii) stands in the northern Sierra Nevada

Degradation and restoration of Indigenous California black oak (Quercus kelloggii) stands in the northern Sierra Nevada

This study summarizes Indigenous oral traditions, assesses current and historical forest structure, and measures fire effects of the 2021 Dixie Fire to understand the state of forests in the northern Sierra Nevada with cultural significance to the Mountain Maidu. Oral traditions of the Mountain Maidu cultural burning practices were passed down through generations and were incorporated into this work by one of the authors. The focal site of the study was the Plumas National Forest expanded on University of California, and data included Berkeley forest inventory plots, a California black oak census, and dendroecological fire history records. Regional forest conditions were assessed historically via a 1924 forest inventory, while current conditions were quantified through data from the Forest Inventory Analysis program.

View Research Brief

View Full Article (open access)

Read More

Forest restoration and fuels reduction work: Different pathways for achieving success in the Sierra Nevada

Forest restoration and fuels reduction work: Different pathways for achieving success in the Sierra Nevada

This paper examines a 20-year forest restoration study in the northern Sierra Nevada looking at changes in forest structure and composition, fuel accumulation, modeled fire behavior, intertree competition, and economics resulting from four treatment regimes: multiple applications of prescribed fire (Fire), multiple mechanical restoration thinnings (Mech), multiple mechanical restoration thinnings followed by prescribed fire (Mech + Fire), and untreated controls

View Research Brief

View Full Article (open access)

Read More

Biogeomorphic Responses to Wildfire in Fluvial Ecosystems

Biogeomorphic Responses to Wildfire in Fluvial Ecosystems

Biogeomorphic Responses to Wildfire in Fluvial Ecosystems draws together interdisciplinary studies and reviews that highlight key insights important to support heterogeneity, biodiversity, and resilience in fluvial ecosystems (Florsheim et al., 2024).

Read More

Prescribed fire and mastication reduced bark-beetle-caused pine mortality

Prescribed fire and mastication reduced bark-beetle-caused pine mortality

This study analyzes data from a mixed-severity fire in the northern range of coast redwood to create a model for predicting postfire response of four redwood community plants.Mastication, thinning, and prescribed fire can help shift fire-prone forests to a structure more resilient to fire and other disturbances. However, the ability to evaluate treatment effectiveness requires long-term monitoring of forest responses to disturbances and assessing changes in fuel loadings and structure. Researchers from Michigan State University and the USFS Fire Behavior Assessment Team remeasured a ponderosa pine forest 13 years after a combination of treatments were implemented: no treatment/control (C), mastication (M), mastication + burn (MB), and mastication + pull back of surface fuels + burn (MPB).

View Research Brief

View Full Article

Read More

Heading fires consume more fuels than backing fires

Heading fires consume more fuels than backing fires

Researchers from Michigan State University and the USFS Fire Behavior Assessment Team used 15 years of immediate pre- and post-fire fuel and wildfire behavior data to identify the role of fire advancement mode and pre-fire environmental drivers (e.g., topography, fire weather, and fuel loadings) on fuel consumption and fire effects in California mixed-conifer forests.

Read More

Fire and fuels management in coast redwood forests

Fire and fuels management in coast redwood forests

This report compiles research on fuel conditions, fire history, and fire effects data from contemporary wildfires to provide context for the future management of old growth coast redwood stands and restoration of old growth attributes in second growth forests. The report also investigates fire hazards present in redwood forests and their fire management implications.

View Research Brief PDF >

View Full Article (open access) >

Read More

California wildland fires burning mostly in non-forests: Research Brief

 California wildland fires burning mostly in non-forests: Research Brief

Wildfires in California burn across a broad diversity of land cover types with different implications for each unique ecosystem. This paper shows that most of California’s recent wildfires burn outside of forests and forest management is just one piece of a very large, very nuanced problem.

View Research Brief PDF >

Read More