Chaparral Restoration Workshop, Angeles National Forest - Arcadia, June 17-21, 2013

Assessing postfire conditions in Spain and the Mediterranean

V. Ramón Vallejo & J.A. Alloza

www.ceam.es

GRAC

Long –term over-exploitation Deforestation Land degradation Desertification

SIERRA ESPUÑA 1885

Large afforestations since the end of XIX century.

SIERRA ESPUÑA 2004

The traditional approach:

Redrawn from Montero & Alcanda (1993)

A KEY DRIVER IN THE MED BASIN: LAND USE HISTORY

Useres Fire (Castelló) 2007

`pine woodlands old fields

0.1

shrublands old-fields

never plowed shrublands

THE SHRUBLANDS IN THE MEDITERRANEAN BASIN

CLIMATE RANGE: P: 1000-350 mm (350-200 mm semi-arid) P/PET: 0.75-0.5 (0.5-0.2) SUBSTRATE: large abundance of calcareous substrates

THE ROLE OF CROPPING/ABANDONMENT

WHAT REFERENCE FOR ECOLOGICAL RESTORATION?

CEAM

RECURRENT FIRES MAY TRIGGER CATASTROPHIC SHIFTS ...

Plant regeneration after burning – heathlands central Portugal

Plant regeneration after burning: Specific Plant Cover

RESPROUTING VIGOUR COULD BE VERY DIVERSE ...

Table 3. PFRT detected in <u>Atlantic vegetation</u> indicating the different intensities of each species and examples of the species included in each group.

PFRT		Stimulation degree		
IIKI	High	Medium	Low	
	11151	1120010111		
Fire Dependent	U. europaeus, U. gallii,	A. lainzii,	U. micranthus,	
(Germination and	U. minor,	P. tridentatum,	C. scoparius,	
resprouting stimulation)	C. multiflorus	G. berberidea,	G. triacanthos,	
		E. vagans, E. ciliaris,	T. globulariifolia	
		H. alyssoides		
Resprouting Dependent (Resprouting stimulation only)	A. curtisii, E. erigena, E. scoparia, E. tetralix, P. longifolium, Q. robur, Q. pyrenaica	D. decumbens, H. lanatus, B. pendula A. marginata, D. cantabrica	C. vulgaris, B. media	
Germination Dependent (Germination stimulation only)	C. striatus	T. guttata	E. umbellata	
Fire Sensitive (No modification of germination nor resprouting)	P. sylvestris, P. uncinata, P. nigra, B. maxima	P. pinaster	P. radiata	

PFRT: Plant Functional-Regenerative Traits Reyes & Casal, 2008

MED. BASIN SCLEROPHYLOUS SPECIES

- **vigorous** post-fire obligate resprouters
- recruitment during inter-fire
 intervals

Genera/sp	Family		
Arbutus	Ericaceae		
Olea	Oleaceae		
Phillyrea	Oleaceae		
Pistacia	Anacardiaceae		
Quercus	Fagaceae		
coccifera			
Q. ilex	Fagaceae		
Q. suber	Fagaceae		
Viburnum	Caprifoliaceae		
Rhamnus	Rhamnaceae		

The key factor in ecosystem recovery in the Mediterranean: the abundance of resprouter species

Data: 6 month afetr fire

Ecology, 90(5), 2009, p. 1420 © 2009 by the Ecological Society of America

Fire-related traits for plant species of the Mediterranean Basin

Ecological Archives E090-094

S. PAULA,¹ M. ARIANOUTSOU,² D. KAZANIS,² Ç. TAVSANOGLU,³ F. LLORET,⁴ C. BUHK,⁵ F. OJEDA,⁶ B. LUNA,⁷ J. M. MORENO,⁷ A. RODRIGO,⁸ J. M. ESPELTA,⁸ S. PALACIO,⁹ B. FERNÁNDEZ-SANTOS,¹⁰

P. M. FERNANDES,¹¹ AND J. G. PAUSAS^{1,12,13}

 life form height rooting depth S:R leaf phenology 	 leaf shape leaf size resprouting ability bud source heat-stimulated germination 	 seed bank longevity seedling emergence age at maturity of resp. age at maturity seedling seed mass propagule
		- dispersal mode

Global Change Biology

Global Change Biology (2011) 17, 2905–2935, doi: 10.1111/j.1365-2486.2011.02451.x

TRY – a global database of plant traits

J. KATTGE*, S. DÍAZ†, S. LAVOREL‡, I. C. PRENTICE§, P. LEADLEY¶, G. BÖNISCH*,

NEW APPROACHES IN POSTFIRE RESTORATION

- To face the dramatic changes in fire regime
- To accomodate to the new social perception of natural areas → ecosystem services
- To make use of advances in fire and restoration ecology

An approach to assess post-fire restoration needs

- Definition of management objectives for burned areas:
 - Avoid damages (erosion, flash floods)
 - Increase resiliencia & biodiversity
 - Prevent new fires

Identification of fire-vulnerable ecosystems

- \Rightarrow Prediction of runoff & soil erosion risk
- ⇒ Prediction of dominant species regeneration capability (resilience, regeneration rate) as a *f*(fire severity & land and ecosystem characteristics)
- Timely application of specific techniques to mitigate degradation and assist regeneration

RAIN EROSIVITY AFTER FIRE

Sediment yields from burned plots in Spain and California: First 2 years after burning

CEAM

POSTFIRE RESTORATION ASSESSMENT

STRATEGIES FOR POST-FIRE REHABILITATION/ RESTORATION

Objectives

- Soil and water conservation
- Increasing ecosystems resilience (and fire prevention)
- Increasing ecosystem and landscape quality
 - promoting biodiversity
 - (often) increasing ecosystems maturity

POST-FIRE ACTIONS (why, where, when, how)

According to: Degradation risk Objectives ⇒ Assuming general ecological objectives

1)Do nothing:

fast and complete natural regeneration low erosion & runoff risk

2) Emergency rehabilitation: degraded land high erosion & runoff risk low plant cover recovery rate high values at risk

muching, seeding + mulching, soil amendments for immediate soil protection

Emergency seeding

May 2003, 7 months after fire and after treatment aplication

S+M: Seeding + Mulch S: Seeding

M: Mulch without seeding

Emergency seeding

Soil protection

S+M: Seeding + Mulch S: Seeding M: Mulch without seeding C: Control

2b) Emergency rehabilitation: high erosion & runoff risk low plant cover recovery rate high values at risk economic interest in logs & pest control (?)

Salvage logging → log dams, branch barriers (contour felling)

Charred logs extraction

Up to 51 Mg ha year⁻¹ soil loss

Silt-fence used to monitor sediment yield

and post-fire logged area

Total sediment yield produced in control and treated areas during the monitoring period: July 2005-April 2006

Aliaga Mayo 2013

3) (re)Introduction of woody resprouters (to increase fire resilience):

understory dominated by woody seeders colonizers - high fuel accumulators oldfields (often)

Planting resprouters tall shrubs & trees

Fire-prone shrublands: Clearing + introduction of fire-resilient species

Experiments conducted in 2003 \rightarrow medium-term analysis

RESULTS 3. Germination of seeder species

Total density of seeder woody seedlings

Density of Ulex parviflorus seedlings 25 ** 20 15 No / m2 10 Т 5 0 Clearing Shrubland Mulch + Mulch -Density of Cistus albidus seedlings 5 ** 4 3 No / m2 2 1

Clearing Shrubland

Mulch + Mulch -

0

Data taken in 2008

4) Recovery of forest

stand-replacing fires lack of seed sources in unburned patches shrublands, oldfields management objective

Plantation of tree species: conifers + hardwoods combined

4b) Recovery of forest (assisted natural regeneration) overstocking → thinning ,.... cleaning of stools in coppices

Excessive post-fire pine regeneration *Pinus halepensis*

CLEARING & PLANTING ALICANTE (AUTUMN 2010)

MAIN ECOSYSTEMS DESERVING POSTFIRE RESTORATION IN THE MEDITERRANEAN BASIN

Previously degraded lands by other pressures

 (overgrazing, cultivation-abandonment, fuelwood & timber exploitation, charcoal production – including uprooting of sclerophyllous species)

• Oldfields

Plant communities dominated by obligate seeders

Erodible soils & steep slopes
 Often developed on soft substrates

s: marls, granites, shales,..

Areas suffering recurrent, short-interval fires

FUME DSS FOR POST-FIRE MANAGEMENT ASSESSMENT

Soil vulnerability

- Soil type- erodibility (~ bedrock)
- Slope grade
- Previous erosion signs

Vegetation regeneration capacity

- •Post-fire regeneration mode& plant maturity
- •Fire history
- •Pest desease risk

Ecological vulnerability

Fire severity

FIRE IMPACTS

POST-FIRE DECISION SUPPORT SERVICE

PRELIMINARY ASSESSMENT OF POTENTIAL ECOLOGICAL IMPACTS

MAPPING EVALUATION¹

¹Adapted from Duguy, B., Alloza, J. A., Baeza, M. J., De la Riba, J., Echeverría, M. T., Ibarra, P., Llovet, J., Pérez-Cabello, F., Rovira, P., and Vallejo, V. R., 2012. Modelling the ecological vulnerability to forest fires in Mediterranean ecosystems using geographic information technologies. Environmental Management, doi 10.1007/s00267-012-9933-3: 1-15.

Example in ArcGis Model Builder

First step: Reclassification vegetation types according to their physiognomy (forest/shrubland), tree canopy cover (if present), tree layer maturity and the post-fire reproductive strategy (resprouters/seeders)

Fig. 2 Scheme for the classification of plant communities into vegetation types. (Ps: *Pinus sylvestris*; Pn: *Pinus nigra*; Ph: *Pinus halepensis*; Pp: *Pinus pinaster*) The codes attributed to the vegetation types correspond to those given in Appendices B and C (Electronic supplementary material). For shrublands: 10: seeder-dominated; 20:

resprouter-dominated; 3: mixed Vegetation types with a tree layer. The first 3 digits of the code appear in the black boxes; the 4th digit, informing about the shrub layer (1: seeder-dominated; 2: resprouterdominated; 3: mixed), appears in the last row

Duguy et al 2012

Third step: Environmental risk integration

	Fire vulnerability		Erosion risk					
<u>Fire v</u>			Very high	High	Medium	Low		
		Very high	Very high	Very high	High	High		
	c lity							
	yntheti Inerabii	High	Very high	High	High	Medium		
	Nui	Medium	High	High	Medium	Medium		
		Low	High	Medium	Medium	Low		

Fire impact protocol

LICCOM

ence of non serotinuos pines	Abundance of young	g serotinuos pines	Recovery rate of resprouster	r species	Nº of fires in the last 20 years	
w edium eight	Low Medium Height		Low Medium Height		0 1 >=2	
VIRONMENTAL RISKS			FIRE SEVERITY			
oil erosion	Other risks	· · · · · · · · · · · · · · · · · · ·	Soil severity		Vegetation severity	
Risk of intense precipitation	Tree failing		Consumption organic ho	rizon	C Unaltered (remains green)	
Steep slopes	Pest propagation		☐ White ash		Partially affected (dry)	
Erodible soils	C Others				C Consumed	
Dominance of seeders						
Evaluation			· · · · · · · · · · · · · · · · · · ·			::
				E		REWOR

Fire impact protocol

EMERGENCY ACTIONS

http://www.fs.fed.us/eng/pubs/pdf/BAERCAT/lo_res/TOContents.pdf

POST-FIRE LOGGING

SPECIFIC REGULATION ON POST-FIRE MANAGEMENT

European & Mediterranean Basin Countries

Country	Interdiction of land use change	Salvage logging	Soil erosion mitigation and flood prevention	Forest regeneration (planting or seeding)	Management of natural regeneration	Grazing control
Bulgaria	X			Х		Х
Cyprus				Х		
Estonia				Х		
France	Х	Х	Х	Х		
Greece	Х	Х	Х	Х		Х
Israel						Х
Italy	Х	Х		Х		Х
Latvia				Х	Х	Х
Lithuania	Х	Х		Х	Х	Х
Morocco	Х		Х			Х
Poland	Х			Х	Х	Х
Portugal	X*	Х	Х	Х		Х
Romania	Х	Х	X	Х	Х	
Spain	Х	Х	X		Х	Х
Slovenia				Х		
Switzerland (Ticino)	х					
Tunisia						X
Turkey	X					

* for selected forest types (e.g. cork oak forest)

Mavsar et al., 2012

~~~