
Citation: Syphard, A.D.; Keeley, J.E.;

Gough, M.; Lazarz, M.; Rogan, J.

What Makes Wildfires Destructive in

California? Fire 2022, 5, 133. https://

doi.org/10.3390/fire5050133

Academic Editor: Charles Jones

Received: 29 July 2022

Accepted: 26 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

What Makes Wildfires Destructive in California?
Alexandra D. Syphard 1,* , Jon E. Keeley 2,3 , Mike Gough 1, Mitchell Lazarz 4 and John Rogan 4

1 Conservation Biology Institute, 136 SW Washington Ave., Suite 202, Corvallis, OR 97333, USA
2 U.S. Geological Survey, Western Ecological Research Center, Sequoia-Kings Canyon Field Station,

Three Rivers, CA 93271, USA
3 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
4 Graduate School of Geography, Clark University, 950 Main Street, Worcester, MA 01610, USA
* Correspondence: asyphard@consbio.org; Tel.: +1-619-865-9457

Abstract: As human impacts from wildfires mount, there is a pressing need to understand why
structures are lost in destructive fires. Despite growing research on factors contributing to structure
loss, fewer studies have focused on why some fires are destructive and others are not. We char-
acterized overall differences between fires that resulted in structure loss (“destructive fires”) and
those that did not (“non-destructive wildfires”) across three California regions. Then, we performed
statistical analyses on large fires only (≥100 ha) to distinguish the primary differences between large
destructive large fires and large non-destructive fires. Overall, destructive fires were at least an order
of magnitude larger than non-destructive fires, with the largest area burned varying by season in
different regions. Fire severity was also significantly higher in destructive than non-destructive fires.
The statistical analysis showed that, in the San Francisco Bay Area and the northern Sierra Nevada
foothills, proximity to the Wildland Urban Interface (WUI) was by far the most important factor differ-
entiating destructive and non-destructive wildfires, followed by different combinations of short-term
weather, seasonal climate, topography, and vegetation productivity. In Southern California, wind
velocity on the day of the fire ignition was the top factor, which is consistent with previous assump-
tions that wind-driven fires tend to be most destructive and most of the destruction occurs within
the first 24 h. Additionally, Southern California’s high population density increases the odds that a
human-caused wildfire may occur during a severe fire-weather event. The geographical differences
among regions and the variation of factors explaining the differences between large destructive and
large non-destructive fires reflects the complexity inherent in decision-making for reducing wildfire
risk. Land use planning to reduce future exposure of housing development to fire and increased
focus on wildfire ignition prevention emerge as two approaches with substantial potential.

Keywords: structure loss; wind-driven fire; wildland-urban interface; fire weather; destructive fire;
large fire

1. Introduction

The changing nature of wildfire has become a prominent ecological and public health
issue across the globe, with growing concern that wildfire impacts will accelerate in the
near future [1,2]. In response to multiple interacting and geographically varying drivers,
fire regimes are changing in diverse ways [3], with area burned increasing in some areas
and declining in others [4,5]. In Mediterranean-climate regions, accelerated erosion after
megafires can threaten ecosystem regeneration and natural capital recovery [6], but in
some conifer forest ecosystems, wildfire reintroduction can provide ecological benefits [7].
Although altered fire regimes have varied with complex ecological effects [8], human
consequences are overwhelmingly negative, with impacts to human life and property,
public health, culture, and economic systems [9]. Recent fire events have resulted in
hundreds of lives lost, tens of thousands of structures destroyed, and exorbitant financial
costs [10–13] In California, USA, where structure loss has long been an issue [14], and is
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getting significantly worse [15], there is a particularly pressing need to understand why
structures are lost in destructive fires.

There is a growing body of work documenting important factors contributing to
structure loss, particularly in areas like the US and Australia where fires have been most
destructive [15–19]. Studies show that structure loss results from a combination of multi-
scale factors that vary from region to region [20]. Housing pattern and arrangement are
consistently top-ranked correlates [21–23], likely because they reflect exposure to wildfire,
which is a necessary first condition for structure loss to occur [24–26]. Accordingly, there
is concern over the rapid growth of the Wildland-Urban Interface (WUI), which is where
houses meet or intermingle with wildland vegetation [27]. A large proportion of structure
loss in the U.S. occurs within areas mapped as the WUI [17,20,28].

Despite the research on factors contributing to structure loss, there has been less study
of the fires themselves that cause structures to be destroyed. Lack of specific research focus
on destructive fires is likely because it is already assumed that fires where structures are lost
are large and wind-driven, burning under extreme meteorological conditions—and this has
certainly been the case for many destructive fires in California [29–31] and globally [32,33].
Nevertheless, in fire-prone regions, there are many other large fires that do not become
destructive, and there are smaller fires that do. Additionally, the relative importance of
fire weather, antecedent climate, terrain, or anthropogenic factors that distinguish between
fires that result in structure destruction versus those that do not have yet to be formally
quantified. Throughout the paper, we refer to fires that result in at least one structure being
destroyed as “destructive”.

Fire weather and fuel conditions at the time of the fire are the most obvious concerns
when it comes to destructive wildfires, and there has been more than a century of research
devoted to the establishment of fire danger rating [34]. A number of different indices for
fire danger rating systems have been developed and implemented globally [35–37], and
they typically calculate the potential short-term effects of temperature, humidity, wind,
and fuel moisture content on fire behavior—to anticipate likelihood of ignition, rate of fire
spread, energy release, and difficulty of control.

In addition to short-term factors used to predict fire behavior on a given day, longer-
term seasonal climatic variables could potentially predict the likelihood for a destructive
fire before or within a given fire season [38]. This is because seasonal climate variables may
affect annual variation in fuel amount or moisture. For example, high antecedent precipita-
tion could promote aboveground biomass accumulation [39], or a dry rainy season or hot
temperatures could increase the moisture deficit [40]. Seasonal fire-climate relationships
are complex, however, and vary in nature and strength and from region to region [41,42].

Beyond dynamic variables such as weather or climate, the geographical location
relative to stable landscape features such as topography or human development could
explain why some fires become destructive. It is well known that topography mediates
fire behavior [43,44], and areas with high topographic diversity may be more prone to
erratic fire behavior or conditions that are difficult to control. The geographical relationship
between fire and roads is also well established. However, although proximity to roads tends
to be positively correlated with ignition occurrence and fire frequency, the relationship with
area burned, or large fires, has been inverse in some studies, with larger fires tending to
occur in more remote locations, farther from roads [21,45,46]. This is potentially because
remote areas may be difficult for firefighters to access for fire suppression efforts [47].

Human-caused ignitions are the dominant ignition source in most of California [47,48],
and recent studies have shown the importance of ignition timing with severe wind conditions,
such as Santa Ana winds [49,50]. Human-caused ignitions have also been associated with
an increase in large fire events [51] in part because human ignitions are likely to occur
under a wider range of conditions than lightning-caused fires [52]. Destructive fires are
also likely to occur in areas that generally have larger human populations and assets at
risk. On one hand, destructiveness may be dampened by proximity to roads for firefighter
access. On the other hand, despite potentially improved access to suppression resources,
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it is possible that the fires that occur closest to humans are the most harmful. Similarly,
proximity to the WUI, where fire frequency tends to be highest [53], may be important in
explaining the distinction between destructive and non-destructive wildfires.

Understanding the factors that contribute to destructive wildfires is especially impor-
tant in California, not only because there are so many structures lost there [15], but because
management effects and effectiveness vary substantially across the state [54]. California
has experienced dramatic changes in its natural fire regimes such that fire frequency has
declined dramatically in some areas and increased dramatically in others [55]. Thus, from
an ecological perspective, there are benefits to increasing the amount of fire on some land-
scapes and decreasing the amount of fire on others. From a human safety perspective,
however, fires are unambiguously detrimental. Thus, preventing fires is mutually beneficial
for humans and resources in the southern part of the state. However, in areas in which fire
is beneficial, differentiating between those fires that are harmful to humans and those that
have resource benefits remains a challenge. In those areas, there is a need to coexist with
fire such that ecologically beneficial fires can remain on the landscape with minimal risks
to humans [56]. Regardless, the combination of climate change [40] and the expansion of
the WUI 27 are generating concern that more wildfires may convert into megafires and
become increasingly destructive [57].

To better understand why some fires become destructive and others do not, we classi-
fied wildfires as destructive or non-destructive for three fire-prone California regions and
quantified their differences. First, after overlaying fire perimeters from 2000 to 2018 with
geographical coordinates of structures destroyed during the same years, we differentiated
destructive wildfires, where at least one structure was destroyed, from non-destructive
wildfires. We then characterized the differences in fire size and severity and extracted
values of potential explanatory variables from within fire perimeters. Assuming that most
destructive fires are relatively large, we factored out fires ≥100 ha and performed statisti-
cal analyses to explain the differences in large destructive and non-destructive wildfires.
Relative to California we asked:

(1) What are the main differences between destructive fires and non-destructive fires?
(2) What combination of fuel, weather, climate, topographic, and anthropogenic factors

best differentiate between destructive and non-destructive large fires?
(3) Do these explanatory factors vary among regions?

2. Materials and Methods
2.1. Study Regions

Given previous research that demonstrated regional differences in variable importance
for factors explaining the probability of large fires and structure loss [22,58], we performed
our analyses separately for three regions in California where structure loss has been ex-
tensive. These areas are the northern and southern San Francisco Bay Area (“Bay Area”),
the northern Sierra Nevada foothills and mountains (“North Sierra Foothills”), and the
southern coastal region (“South Coast”). All three regions are characterized as having
Mediterranean climates, with warm to hot, dry summers and wet winters. The only region
to receive substantial snowfall is the North Sierra Foothills.

The Bay Area region includes 33,223,500 ha of land to the north and south of the San
Francisco—Oakland metropolitan area, which is the second largest metropolitan area in the
state (Figure 1). The mean population density for the region is 1.93 people per ha. While
the metropolitan region is characterized by expansive high-density urban development,
much open space remains in the region. Nevertheless, there has been extensive housing
development in recent decades, and 16% of the land was mapped as Wildland Urban
Interface as of 2010 [27], with a mean landscape-scale distance to WUI being 3.22 km.
The region extends from the coast through the coastal ranges with the border ending
at the Central Valley. Much of the vegetation is characterized by oak woodlands and
grasslands, forming a mosaic with chaparral and hardwood forests, with montane forests
at the highest elevations. The northern part of the region is where the 2017 “wine country”
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fires occurred, in which nearly 9000 structures were destroyed and 44 people lost their lives
(https://www.fire.ca.gov/incidents/2017/) (accessed on 25 August 2022).
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Figure 1. The Bay Area, North Sierra Foothills, and South Coast study regions in California, USA. Figure 1. The Bay Area, North Sierra Foothills, and South Coast study regions in California, USA.

The North Sierra Foothills region contains 9,404,800 ha of land spanning the gradient
from the central valley on the west to the northern cismontane Sierra Nevada on the east
(Figure 1). With a mean of 1.0 people per ha, this study region has the lowest population
density, with no major cities within. However, the region has the highest proportion
of WUI of the three regions, with 37% area mapped as WUI as of 2010 and an average
distance to WUI being 2.01 km. The vegetation is primarily grassland and chaparral at
the lowest elevations and transitions eastward and higher in elevation through mixed
evergreen forests to pine- and fir-dominated forests, with small areas of sub-alpine forests
at the highest elevations. This region has had a growing number of destructive fires in

https://www.fire.ca.gov/incidents/2017/


Fire 2022, 5, 133 5 of 17

recent decades, with the most notable being the 2018 Camp Fire that destroyed more than
18,000 structures and resulted in 86 lives lost.

The South Coast region is 36,170,100 ha and contains extensive high-density urban
development along the coast, including both the Los Angeles and San Diego metropolitan
areas. Accordingly, this region also has the highest population density of 4.68 people per
ha. Much of the population lives in high-density urban areas. Therefore, although it is
the most populous region, it is also the region with longest landscape-scale distance on
average to the WUI, at 4.01 km. The proportion of WUI in the region is 18%. Most of
the vegetation in the South Coast region is non-forested, with coastal sage and chaparral
shrublands interspersed with grassland and oak woodland, although montane conifer
forests dominate at the highest elevations. Southern California has a long history of wind-
dominated destructive wildfires [54].

2.2. Fire and Structure Loss Data

Our structure loss data consisted of geographical coordinates for the locations of
residential buildings destroyed between 2000–2018 and described in previous studies
(e.g., [22,58,59]). The structure loss dataset included a combination of digitized points
from the visual identification of destroyed structures using pre- and post-fire Google Earth
Imagery in addition to points provided via public records request from the Cal Fire Damage
INSPection Program (DINS data) (DINS data, https://gis.data.ca.gov/datasets/1b1c428af1
f74a8c912f4b5c9e40d51e/about) (accessed on 25 August 2022). In total, the data included
176,690 structures, with 50,516 having been destroyed in a wildfire.

For fire perimeters, we selected and used all fires from 2000–2018 that overlapped
our study area boundaries from the digital historical overlapping fire perimeter data
from Cal Fire (https://frap.ca.gov/mapping/gis-data/) (accessed on 25 August 2022).
After overlaying the fire perimeters with the structure loss data, we counted the number
of destroyed structures within and labeled any perimeter that contained at least one
structure destroyed as “destructive” and any perimeter with no structures destroyed as
“non-destructive” (Table 1).

Table 1. Number of all and large (≥100 ha) destructive and non-destructive fires from 2000–2018 in
three California regions.

All Fires: Region Destructive Total Proportion

Bay Area 41 579 0.07
North Sierra Foothills 59 404 0.15

South Coast 59 1475 0.04

Total 159 2458 0.06

Large Fires: Region
Bay Area 30 180 0.17

North Sierra Foothills 33 89 0.37
South Coast 54 349 0.15

Total 117 618 0.19

In addition to the locations of destroyed structures, we also overlaid and counted
the total number of structures within each fire perimeter using the open-access Microsoft
Building Footprint dataset (https://www.microsoft.com/en-us/maps/building-footprints)
(accessed on 25 August 2022). For each fire, we then quantified the proportion destroyed of
the total number of structures within the perimeter.

2.3. Explanatory Variables

To identify characteristics most strongly associated with destructive fires, we evaluated
a range of climate, weather, fuel, and anthropogenic variables that could potentially affect
fire behavior or fire exposure. These variables we analyzed in the statistical analyses

https://gis.data.ca.gov/datasets/1b1c428af1f74a8c912f4b5c9e40d51e/about
https://gis.data.ca.gov/datasets/1b1c428af1f74a8c912f4b5c9e40d51e/about
https://frap.ca.gov/mapping/gis-data/
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reflected conditions that were present before the fire occurred. We also summarized
the size and severity of all fires for descriptive differentiation. For different variable
types (i.e., weather, seasonal climate, and human infrastructure), we compared a suite of
related variables, described below, and selected the ones for statistical analysis that were
uncorrelated (r < 0.7) and had the highest bivariate correlation with the percentage of
structures burned in the fires (i.e., 0–100).

Our source of weather data was the Gridded Meteorological Dataset (GRIDMET) [60],
from which we extracted relative humidity (RH), maximum temperature, 100 and 1000-h
fuel moisture, wind velocity, and energy release component (ERC, a fire danger rating index
that approximates fuel moisture) for the first day of the fire and for 7 and 30 days prior to
the fire. The ERC is a weather-climate buildup index calculated using daily temperature,
precipitation, humidity, and other meteorological variables over a fuel model to represent
potential fireline intensity [60], with the gridded weather continually updated. Many of
these variables were highly correlated, so, using the approach described above, we retained
relative humidity, energy release component, and wind velocity for the day of the fire
(r = −0.10, 0.10, and 0.4, respectively).

For seasonal climate variables, we extracted monthly mean precipitation and monthly
mean and maximum temperature from 2.5 arc min PRISM data for every fire perimeter
(PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu) (accessed
on 25 August 2022), averaged the monthly values for the four seasons (Winter: December–
February; Spring: March–May; Summer: June–August; Autumn: September–November)
and averaged these values across the area of the fire perimeters. We considered climate
variables for all seasons for all fires due to the potential longer-term influence of these
variables on fuel conditions at the time of fire. These seasonal values corresponded to the
year of or preceding the year of the fire depending on the date of the fire. We also extracted
the vapor pressure deficit and mean annual precipitation for the years of and before the fire.
After checking for correlations among this group of climate variables, we retained mean
autumn precipitation (r = 0.15) and mean summer temperature (r = 0.02).

For anthropogenic variables, we considered the proximity of fires to roads (which
could represent firefighter access) and the Wildland Urban Interface (WUI), which is where
wildfires are most likely to destroy structures [27,53]. We analyzed these variables to
determine if location of fires relative to human presence influences the likelihood that the
fire will become destructive. For the roads, we used the TIGER line Census data (https:
//www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html) (ac-
cessed on 25 August 2022) to calculate the mean and minimum distance of all cells within
fire perimeters to the road. We compared the minimum and mean because the values of
these variables could be different in larger fires. Similarly, to assess the proximity of fires
to the WUI, we calculated the minimum and mean distance of fire perimeters to Intermix,
Interface, and all WUI as mapped in 2010 [61] in addition to the proportion of WUI within
fire perimeters. Intermix and Interface WUI vary in terms of the arrangement of housing
density and land cover such that intermix WUI refers to the intermingling of structures and
vegetation; and interface refers to areas where housing is near large patches of wildland
vegetation. Although the mapped WUI was from 2010, and our study included fires up to
2017, we assumed that any changes to the WUI during that time would not significantly
influence model results. This is because, once WUI is built, it generally remains in place;
and any change would primarily occur in one direction (expansion). The WUI variables we
considered were mapped in a binary format (a grid cell was either WUI or it was not WUI),
and thus, distance to WUI was either a mean or minimum distance from the cells within a
fire perimeter to the closest mapped WUI area. From these variables, we retained distance
to all WUI (r = −0.08) and distance to roads (r = −0.07) as these were the two uncorrelated
variables with the strongest relationship with destructive fires.

To account for spatial variation in fuel volume, we extracted and averaged the
annual maximum Normalized Difference Vegetation Index (from Landsat TM data at
30 m resolution, https://landsat.gsfc.nasa.gov/article/the-thematic-mapper/ (accessed
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on 25 August 2022) across fire perimeters for the year of the fire. The annual maxi-
mum values account for any variation due to seasonal differences. We also used an
average of percentage slope from a 30 m USGS digital elevation model (DEM) (https:
//www.usgs.gov/3d-elevation-program) (accessed 25 August 2022).

2.4. Analysis

To compare the characteristics of destructive and non-destructive fire events after
they had burned, we calculated and compared their final size and severity. Here, fire
severity refers to the amount of aboveground biomass consumed by the fire. For fire
size, we used a GIS to summarize the area of the spatially explicit fire perimeters. For
fire severity, we used USGS Landsat 5 (https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LT05_C02_T1_L2), 7 (https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2), and 8 (https://developers.google.
com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2) (accessed 25 August
2022). Tier 1 Surface Reflectance to calculate the mean, median, and maximum values of
both the delta normalized burn ration (dNBR) and the relativized burn ratio (RBR) for
all fire perimeters, and then summarized the burn severity metric that was most highly
correlated with destructive wildfires in the analysis. Severity indices were calculated using
the closest cloud-free image prior to the ignition data and the closest cloud-free image
after the containment data. Others have found the RBR to correspond best with field-
based measurements of burn severity [62], and we selected the maximum RBR for this
analysis (r = 0.18). To determine whether there were significant differences in burn severity
for destructive and non-destructive fires, we checked to ensure a normal distribution of
maximum dNBR values for each study region and then ran Welch Two Sample t-tests using
R Studio.

As most wildfires are small, and structures tend to be destroyed in larger fires, we
omitted small fires from the inferential statistical analysis to ensure we were not simply
developing models that explain fire size. In other words, we wanted to understand, of
the fires that become large, what is the difference between those that result in structure
loss and those that do not? Therefore, we used fires ≥100 ha for statistical analysis. We
created a binary (destructive vs. non-destructive) instead of a continuous (percentage
of structures destroyed) response variable because a small percentage of the fires in the
dataset were destructive and there was not much variation in the non-zero values of the
continuous response.

To explore the relative independent importance of the climate, weather, anthropogenic,
and vegetation variables in explaining destructive large fires from non-destructive large
fires, we used a hierarchical partitioning multiple regression approach. Hierarchical par-
titioning iteratively runs through a hierarchy of multiple regression models using all
combinations of explanatory variables, calculates the models’ goodness of fit, and ul-
timately produces a measure of variables’ ranking of relative importance. We ran the
hier.part package in R Studio [63] using destructive versus non-destructive large fires as
a binomial response variable and a log likelihood measure of goodness of fit. The output
of the model is a percentage distribution of the contribution of the variables’ independent
effects. The independent contribution is calculated as the improvement in fit for each
hierarchical level of multiple regression models including a given variable versus omitting
that variable. The improvement in fit is averaged across model hierarchies and results in a
metric of percentage of independent contribution. Although hierarchical partitioning may
produce a rounding error with more than 9 variables, it is an accurate and robust means of
establishing the ranking of variable importance with nine or fewer variables [64], and we
used 9 variables in our models.

We also created classification trees [65] to assess and visualize the relative influence
of variables in a multivariate framework for the three regions. Classification trees use an
iterative clustering algorithm to recursively partition a dataset into a hierarchy of relatively
homogenous classes that provide the strongest fit to the binary response (i.e., destructive
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versus non-destructive fires). The algorithm sorts data according to decision rules that
split variables according to thresholds that best differentiate the two classes in the response
variable. The graphical output displays the most important variables are at the top of
tree, with further splits of the data branching out according to their importance. Only the
variables that most effectively split the data are retained in the tree. Thus, classification
trees intuitively delineate interactions among variables and provide a clear visualization of
how the data are structured. To develop and plot the trees we used r.part and rpart.plot
packages in R Studio [63] To assess how well the classification trees fit the training data, we
calculated the area under the curve for receiving operating characteristic (ROC) plots [66]
using the ROCR package in R Studio [63].

3. Results

Overall, 159 out of 2458 (6%) fires overlapping the study boundaries from 2000–2018
had at least 1 structure destroyed. The Bay Area had 41 destructive fires; the Sierra Nevada
had 59; and Southern California had 59 (Table 1). When accounting for all fires in the
database, the destructive fires were larger than the non-destructive fires by at least an order
of magnitude (Table 2), with most area burned in summer in the Bay Area, autumn in the
North Sierra Foothills, and winter in Southern California (Figure 2). When considered
across the state, however, most of the area burned in destructive fires occurred in the
autumn (Figure 2).
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Table 2. Mean and median fire size (ha) for all (n = 2458) destructive and non-destructive fires from
2000–2018 in three California regions.

Mean Fire Size Median Fire Size

Region Destructive Non-Destructive Destructive Non-Destructive

Bay Area 11,289 531 1349 29
North Sierra Foothills 2439 96 145 16

South Coast 12,551 484 3537 14

Although destructive fires were generally much larger than non-destructive fires, there
were 42 destructive fires smaller than 100 ha (2%), with 15 destructive fires smaller than
10 ha. After factoring out small fires, there were 618 large fires ≥100 ha (25% of the total
number of fires in the dataset). Of these, 117 were destructive, or, 19% of the fires (Table 1).
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Eight of the total number of fires had more than 1000 structures destroyed, with the
single largest number of structures lost (n = 19,568) in the Camp Fire in the North Sierra
Foothills. The rest of the fires with ≥1000 structures lost were in the Bay Area (n = 3) and
Southern California (n = 4). There were 28 fires with more than 100 structures lost, but most
destructive fires (n = 92) had fewer than 10 structures lost. Relative to the total number
of structures within fire perimeter boundaries, this translates into a relatively low overall
average percentage of structures destroyed in destructive fires.

In all three regions, the destructive fires burned at a higher maximum severity than the
non-destructive fires (Figure 3). The t-tests showed that the difference was significant for
the Bay Area (p = 0.001), the North Sierra Foothills (p = 0.02), and for Southern California
(p < 0.001).
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Figure 3. Mean burn severity (maximum dNBR) in non-destructive (0) and destructive (1) wildfires
in (a) the Bay area (b) the North Sierra Foothills (c) Southern California, and (d) Statewide for all
wildfires from 2000–2018. The boxplot depicts the minimum, maximum, and interquartile range (25th
to 75th percentile), the median, and outliers displayed as circles.

The differences between destructive and non-destructive fires for the fire weather
variables were consistent for all three regions; the relative humidity was lower, the ERC was
higher, and the winds were faster for destructive fires (Table 3). The summer temperature
was higher in destructive fires for the Bay Area and the South Coast, but it was lower for
destructive fires in the North Sierra Foothills. In all regions, autumn precipitation was
higher for destructive fires. The maximum NDVI in the fire years was higher for destructive
fires in the Bay Area and the South Coast, and it was the same for both destructive and
non-destructive fires in the North Sierra Foothills. For all three regions, destructive fires
had shorter distances to roads and the WUI than non-destructive fires.

For the hierarchical partitioning results, showing the relative independent contribution
of the explanatory variables, distance to the WUI was by far the most important variable
for the two northern study regions, the Bay Area and the North Sierra Foothills (Figure 4).
In the Bay Area, relative humidity was the second most important variable, with the other
variables contributing less than 10% of the relative importance. The second most important
variable in the North Sierra Foothills was ERC, but it was not much more than the other
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variables, each of which contributed less than 5% of the relative importance. In the South
Coast region, wind velocity was the most important variable, followed by distance to roads,
distance to WUI, and autumn precipitation, with the rest of the variables contributing only
a minor amount.

Table 3. Mean values for explanatory variables in models distinguishing destructive and non-
destructive large wildfires in three California regions.

Bay North Sierra Foothills South Coast
Destructive Non-Destructive Destructive Non-Destructive Destructive Non-Destructive

Relative humidity(%) 18.7 25.3 17.9 20.6 16.7 23.0
ERC (index) 66.7 57.9 74.0 69.4 69.9 61.9
Wind (m/s) 3.8 3.1 3.5 3.2 8.2 7.7

Summer temp (C) 19.8 19.1 21.8 22.1 21.7 19.1
Autumn precip (mm) 99.4 93.8 157.7 142.2 52.7 42.1

NDVI (index) 0.7 0.7 0.7 0.7 0.5 0.5
Slope (degrees) 17.1 13.8 11.3 9.0 16.9 13.7

Distance roads (m) 40.8 89.1 21.6 95.8 17.8 100.5
Distance WUI (m) 2.0 2.3 0.7 1.3 0.6 1.0
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Figure 4. Relative independent variable importance explaining the difference between destructive
and non-destructive wildfires ≥100 ha for three California regions from 2000–2018. Variables account
for: weather (relative humidity, energy release component (ERC), and wind velocity) on the date that
fires started, seasonal climate (summer temperature (summer temp), autumn precipitation (autumn
precip, vegetation productivity (normalized difference vegetation index (NDVI) in the year before the
fire, slope, distance to roads, and distance to the Wildland Urban Interface (WUI) in the year 2000.

In a multivariate framework, the distance to the WUI was again the most important
variable for the two northern regions (Figures 5 and 6), although the thresholds separating
destructive from non-destructive fires was different, with a longer-distance threshold for
the Bay Area. In the Bay Area, relative humidity was the second most important split of
the data, followed by NDVI on the day of the fire, slope, and wind velocity (Figure 5). No
other variables were retained in the tree, and the AUC for the tree was 0.91. For the North
Sierra Foothills, seasonal climate–autumn precipitation, followed by summer temperature,
were the next most important splits of the data, with ERC being the third most important
variable and no other variables retained for the tree (Figure 6). The AUC on training
data for the North Sierra Foothills tree was 0.85. In Southern California, wind velocity on
the day the fire started was the most important variable distinguishing destructive from
non-destructive fires in a multivariate framework (Figure 7). The only other two splits and
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variables in the tree were relative humidity followed by NDVI on the day of the variable.
The AUC was 0.66.
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4. Discussion

Not surprisingly, fires that resulted in structure loss were significantly larger and
burned at higher severity than fires that did not result in structure loss. In general, most
fires become large during severe fire-weather conditions, with strong winds or low fuel
moisture [67], which are also the conditions that increase fire suppression difficulty [68].
Thus, it makes sense that structure loss often occurs in large fires that are difficult to control.
In terms of the factors distinguishing large fires that become destructive versus large fires
that do not, there were different combinations of short-term weather, seasonal climate,
slope, and proximity to human infrastructure that were important in the three regions, with
the two northern regions being most similar. In the two northern regions, proximity to
the WUI was overwhelmingly the most important factor; but in Southern California, wind
velocity on the day of the fire was most important.

While it may seem obvious that destructive fires were most likely to occur close to the
WUI, fire danger is typically characterized by fuel and meteorological conditions rather than
location. The strong importance of proximity to WUI supports the notion that, once fires get
large, structure destruction is as much or more about structure exposure than differences
attributable to the fire itself. In other words, for the two northern regions, characteristics
of large fires were relatively similar—and the ones most likely to destroy structures were
those in which structures were in closer proximity to the fire. In a broader-scale global
study, Bowman et al. [32] also found that disastrous extreme fire events were most common
in areas that had intermediate population density (>1 and <100 humans per km2), which is
another way to consider exposure. Differences between exposure and sensitivity are often
highlighted in hazard research because exposure is the first and necessary condition to be
met before damage or destruction occurs [26,69,70].

Although Southern California is by far the most populous of the three regions, much
of the population lives in high-density cities like Los Angeles and San Diego. Thus,
surprisingly, it is the region with the longest overall mean distance to the WUI. Nevertheless,
although distance from the fire to the WUI was not the top factor as it was in the other two
regions, it was the third most important variable in the hierarchical partitioning analysis.
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Thus, exposure here is also a significant determinant of why fires become destructive. This
is consistent with other studies showing that housing arrangement and location, namely
low housing density, are the most important factors influencing structure loss in Southern
California [71–73], as they are elsewhere in the state [21].

Low- to intermediate-density housing development exposes structures to more sur-
rounding wildland vegetation, and this is one reason that land use planning could be one
of the most effective long-term strategies to reduce the likelihood that future fires become
more destructive [74–76]. One caveat to this is that, once a development is exposed to and
experiences a wildfire, the housing density relationship may cross a threshold in which
the direction of influence flips—and then higher density is a bigger risk factor due to the
potential for structure-to-structure ignition [77].

Instead of distance to the WUI, high wind velocity on the day of fire ignition was
the top-ranking factor distinguishing destructive and non-destructive fires in Southern
California. This is not surprising, as wind-driven fires are generally implicated as the most
destructive [29,32,78], especially in Southern California where extreme wind conditions
have long been associated with structure loss [29,79]. Hot, dry, strong, offshore foehn winds,
notably Santa Ana winds, originate from eastern deserts every year, and their frequency
increases during the autumn and winter when fuel moisture is driest after the long summer
drought, characteristic of the Mediterranean climate. This partly explains why the most
area burned in Southern California occurs in winter and autumn (Figure 2).

When an ignition occurs during one of these Santa Ana wind events, wildfire behavior
readily becomes extreme, spreading rapidly, and casting embers kilometers from the
fire front. These conditions are particularly dangerous and difficult to defend, limiting
firefighter access to strategic locations for suppression [80]. Many destructive fires in
northern areas of California, particularly in recent years, have also been wind-driven [81,82].
However, there may be less variability in the wind conditions between large fires that
are destructive or not in those regions, which may explain why it was less important
there. Another potential reason that wind was less important in the north is that we only
accounted for wind on the first day of the fire instead of the entire fire duration. This may
have resulted in an underestimation of the importance of wind. Nevertheless, wind on the
first day of the fire is clearly of critical importance in Southern California.

In the classification tree for Southern California, the second most important variable
was relative humidity, which regulates fuel moisture and promotes ignitability. This is
consistent with findings by Jin et al., [83] who found that low relative humidity is strongly
associated with Santa Ana wind fire spread and size, and thus potentially with suppression
difficulty. Relative humidity could potentially increase home flammability as well. The
combination of winds and low relative humidity may be particularly problematical in
Southern California owing to the large human population and potential for fire ignition.
Humans cause the vast majority of ignitions in this region (and across the state) [41], and
recent work has shown that number of ignitions is the strongest variable explaining area
burned in Santa Ana wind fires, more than climate or weather 51. Human-caused fires in
general are more likely to result in extreme fire behavior than lightning-caused fires [52].

In this study, we only considered the wind velocity on the first day of the fire, which
we assumed to be the most destructive day. Given that Santa Ana events often occur over
several days, the wind on the first day of the fire may also be a strong indicator of wind
on the immediately following days. Nevertheless, we recognize that by only considering
this one wind variable we may have missed the role of wind on the following days of the
fires. We also did not consider wind direction here, which could be a clear predictor of fire
danger as most of the foehn winds are northeasterly winds.

5. Conclusions

This study illustrates the multivariate and geographically varying factors that combine
to describe why fires become destructive. The importance of multiple factors in different
regions confirms that wildfire initiation and propagation are complex processes driven by
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a suite of bottom-up (e.g., topography or NDVI) and top-down (e.g., climate or distance
to WUI) factors with varying degrees of spatial (e.g., distance and location) and temporal
(e.g., daily weather and seasonal climate) dependency [84,85]. While this complexity is a
challenge for management and decision-making, and for making future fire projections [86],
the consistent importance of weather on the day of ignition and proximity to WUI can
inform decision-making. Land use planning to reduce exposure of new housing to weather-
driven wildfires could help prevent future losses. In addition, given the importance of
ignitions and ignition location relative to wind-driven fires in particular, targeted ignition
prevention programs could reduce the occurrence and frequency of wildfires with potential
to become destructive. Future work focused on detailed case studies and fire behavior
throughout the course of destructive fire events could further our understanding of when
and where to focus planning efforts.
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