New perspectives on aspen in the western US: phylogeography, regeneration ecology, and triploidy

Karen Mock, Colin Callahan, Richard Gardner, and James Long Utah State University, Ecology Center and Wildland Resources Department

Swan Flat, Logan Canyon

1) Clonal dynamics & reproductive ecology

2) Phylogeography

3) Triploidy

Spatial & Ecological Amplitude

Aspen suckers from horizontal roots near the surface

Photo © University of Minnesota Extension

Pronounced phenotypic differences among clones

Photo Ron Ryel USU

Traditional View of Western Aspen Regeneration Ecology

Ancient clones & little or no sexual reproduction

Implications: establishment by seed long ago (diff't climate?) subdivided clones low clonal diversity permanent loss from landscapes

Fish Lake Stands

Sample points on 50m grid

At each point, overstory & understory ramet sampled

580 samples total316 overstory264 understory

Stand containing "Pando" - discovered by B. Barnes 1970s

- est. 47,000 stems
- 43 ha (106 acres)
- largest living organism?

Black line = "Pando" boundary from Kemperman & Barnes (1976).

Genetically confirmed as ONE CLONE (DeWoody et al. 2008)

Circles = stems sharing the dominant "Pando" genotype

Triangles = stems displaying <u>other</u> genotypes.

100 m

-0.0.0

.

Π

0 0 0

0

0.0.0.0

0 0 0 0

Utah

Pando

Fish Lake Study Area

- sampled 580 trees
- detected 61 genetically distinct clones
- most clones consisted of 1-2 ramets (i.e. many more clones were likely missed)
- only 3 of the 61 clones had > 10 ramets
- most understory samples matched overstory samples

Photo Darren McAvoy USU

1

Natural aspen seedling establishment inside ponderosa pine plantations following Pumpkin fire (2000):

- aspen showed up in 9 out of 16 plantations
- 70 seedlings, 5-10 year old
- No aspen in area previously
- genetically all unique
- Fairweather et al. 2014 Forest Science

Photo 2010 by Mary Lou Fairweather (USFS).

Aspen seeding event following 2010 Schultz fire in northern Arizona (2011 photos by Mary Lou Fairweather, USFS)

Conclusions:

- pattern of clonal sizes suggest signatures of past seeding events
- recent seeding events suggest rain of fertile aspen seeds
- seedlings are surviving when protected from herbivory
- unlikely that sexual reproduction and clonal diversity are negligible, even in western landscapes.
- seeding events are likely episodic, but are 'windows of opportunity' for recolonizing new locations, increasing genetic diversity, and increasing adaptive potential.

Phylogeography

Based on genetic data from >1200 trees in 39 populations....

Is aspen genetically subdivided?

How is genetic diversity distributed?

Genetic tools: microsatellites

Highly variable nuclear genetic markers that can be used to distinguish individuals and populations

Individual #1

Individual #2

Is aspen genetically subdivided?

YES, There is a SW and a Northern cluster,

Distinct boundaries at this scale

Is aspen genetically subdivided?

YES, There is a SW and a Northern cluster

Distinct boundaries at this scale

The post-glacial expansion of aspen did <u>not</u> come from the SW.

Is aspen genetically subdivided?

YES, There is a SW and a Northern cluster

ADAPTIVE differences??

Northern populations are very similar to each other, SW populations are genetically distinct (consistent with isolation and genetic drift)

SW group: generally lower withinpopulation diversity than N group

Management Implications (Phylogeography):

- Different genetic clusters (N, SW) may be different ecotypes, which would impact germplasm transfer recommendations and assisted migration programs.
- Isolation and low within-population diversity in SW may become a problem as aspen habitats shrink with climate change.
- Research done only in the N or SW may not be relevant to aspen in both regions...aspen in these regions may respond differently to herbivory, diseases, climate, management, etc.

Distribution of clone sizes (# stems) in western US:

Larger clones tend to be triploids.

black = triploid clones gray = diploid clones

Mock et al. 2008

Northern Utah study plot 50m sampling grid symbols = clones

Black symbols = triploid

Mock et al. 2008 Molecular Ecology

http://www.macroevolution.net/po lyploid.html#.VDGUtfmhmuk

What we know about triploids

- Triploids likely result from union of <u>unreduced</u> (2x) gametes with normal (1x) gametes.
- Unreduced gametes, and hence triploids, should be quite <u>rare</u>. So if triploid clones are common, suggests strong selection.
- Triploid individuals should have very <u>low</u> <u>fertility</u>.
- Triploids should have larger cells (physiological advantage/vulnerability?)
- Better defended chemically? (Gardner, unpublished)
- Greater incremental growth early in stand development? (DeRose et al. in press)

If triploids have some vegetative advantage in western landscapes:

Seeding

- smaller clones
- younger clones
- more diploids

lary Lou Fairweather

- higher genetic diversity
- more evolutionary potential

Coppicing

Windows of Opportunity (fire + moisture + low herbivore pressure)

Suckering

- bigger clones
- older clones
- more triploids
- lower genetic diversity
- less evolutionary potential

Bioclimate model predictions: loss of 46-94% of the aspen climate profile in the western US by 2090

Source: Rehfeldt et al. 2009 Forest Ecology & Management 58: 2353-2364

Silvicultural approaches to enhance windows of opportunity for seedling establishment:

• Leave seed trees/clones

Silvicultural approaches to enhance windows of opportunity for seedling establishment:

- Leave seed trees/clones
- Protect natural seedling establishment events (e.g. post fire)

Silvicultural approaches to increasing establishment of seedlings:

- Leave seed trees
- Protect natural seedling establishment events (e.g. post fire)
- Develop protocols for seed sourcing, propagation & planting

<u>Acknowledgements:</u>

Stewart Sanderson **Dale Bartos** Ron Ryel **Paul Rogers** Mary Lou Fairweather Hardeep Rai Nurul Faridi Justin DeRose Valerie Hipkins Jennifer DeWoody Harley Shaw Ed Packee Jane Higgenson Simon Landhäusser ...and many others!

Funding:

USFS FIA program, NASA Biodiversity Program, USU Cedar Mountain Initiative, USU Research Catalyst seed grants, USDA Natural Resource Conservation Service, USU ADVANCE program, USU Ecology Center.

