Linking Evaporative Demand Surplus and Precipitation Deficits to Multi-Year Streamflow Drought in California

Dan McEvoy :

Desert Research Institute and Western Regional Climate Center

Michael Hobbins:

University of Colorado, Cooperative Institute for Research in Environmental Sciences and NOAA Earth Systems Research Laboratory

2016 Yosemite Hydroclimate Meeting October 5-6 Yosemite National Park, CA

California Streamflow as a Drought Indicator

- Long climate records
- Reflects the combined effect of several climate and hydrologic variables: temperature, precipitation, snow water equivalent, evapotranspiration, and evaporative demand

Standardized Runoff Index

- Shukla and Wood, 2008, GRL
- Follows Standardized Precipitation Index methodology:
 - 1. Accumulate streamflow at given time scale (i.e., 1, 6, or 12 month running mean)
 - 2. Estimate cumulative probability based on a parametric or **empirical** distribution
 - 3. Cumulative probability is converted to standard normal deviate (zero mean and one standard deviation

Standardized Runoff Index

- 9 USGS streamflow gauges
- Water year SRI...slightly modified as September – August so 2016 could be used
- 12, 24, 36, 48, and 60 month SRI
- Full period: each gauge has different record length
- Climate data (gridMET) record: 1980-2015

SRI at Merced River

SRI at Big Rock Creek

• San Gabriel Mountains, northeast of Los Angeles

Evaporative Demand Drought Index (EDDI)

- Hobbins et al. 2016: Theory and formulation
- McEvoy et al. 2016: Comparison against other drought indices
- Accumulated evaporative demand only (Penman-Monteith [ET_o])

Temperature

Wind Speed

Humidity

- No precipitation!
- Same methodology SRI

"Atmospheric Thirst"

ftp://ftp.cdc.noaa.gov/pub/Public/mhobbins/EDDI/

Generated by NOAA/ESRL/Physical Sciences Division

ASCE Standardized Penman-Monteith (ET_o)

(Allen et al. 1998, 2005)

ET_o as a Drought Indicator

- Under water limited conditions: ET and ET_o vary in opposing directions
- CR: R. J. Bouchet, 1963

Complementary Relationship in California

Apr – Sep, Russian River Basin, CA

- Wet years: ET and ET_o
 very close to each other
- Dry years: ET and ET_o much more separated
- ET_o anomalies can be used as a drought indicator similar to precipitation anomalies
- ET_o easier to estimate than actual ET with confidence

[Hobbins et al., 2016]

SPI and SPEI

- SPI: Standardized Precipitation Index, precipitation only
- SPEI: Standardized Precipitation Evapotranspiration Index [P PET]
- Accumulated precipitation or [P PET]
- Same methodology as SRI and EDDI

[SPEI, Vicente-Serrano et al. 2010]

[SPI, McKee et al. 1993]

Drought Index Data and Analysis

- University of Idaho gridMET (<u>http://metdata.northwestknowledge.net/</u>)
 - Daily temporal resolution, CONUS-wide, 4km spatial resolution, 1979present
 - Combines NLDAS-2 and PRISM for near real-time updates (2-3 day latency)
 - Temperature, specific humidity, wind speed, downward shortwave radiation, and precipitation
- Lag correlation analysis between EDDI/SPI/SPEI and water year SRI (12-month ending in August)

gridMET annual average ETo: 1981-2010

[gridMET:

Abatzoglou 2013]

Merced River Drought Index Correlations

- 12-month SRI ending in August
- 1-12 month EDDI, SPI, and SPEI at Jan-Aug ending months
- Cold season precipitation and ET_o explain most of the streamflow variance

Merced River Drought Index Correlations

- All indices agree: 2014 and 2015 most severe droughts in record
- Warm + wet can still lead to ET_o surplus or high EDDI values: 1996, 1997, 2016
- Temperature not always dominant ET_o driver

Sacramento River Drought Index Correlations

- Strongest relationships between EDDI and SRI: R² = 0.73
- Better agreement on 1987-1992 drought
- ET_o sensitivity to drivers varies with region

Conclusions

- Precipitation more correlated to streamflow droughts than ET_o
- However, ET_o alone still strongly related to streamflow
- Precipitation and ET_o during cool season most important for water year streamflow
- ET_o anomalies were driven by different contributions of ET_o drivers throughout the 2012-2016 drought
- 2012-2013: greatest contributions from **temperature** *but* large contributions from **humidity** and occasionally **wind speed**
- 2014-2016: large **temperature** anomalies dominated the ET_o signal
- Contributions from **radiation** always minor

Future Work

EDDI work:

- Operationalizing an Evaporative Demand Drought Index Service for Drought Monitoring and Early Warning
- NOAA Research Transition Acceleration Program (RTAP), 3-years, ~ \$900K
- Experimental daily updated EDDI maps: <u>ftp://ftp.cdc.noaa.gov/pub/Public/mhobbins/EDDI/</u>
- Seasonal forecasts of ET_o anomalies for drought early warning

Thank you!

Questions?

mcevoyd@dri.edu

Lake Tahoe as seen from top of Incline Peak, NV. February, 2014