Effect of fuels management, previous wildfire and fire weather on Rim Fire severity

Jamie Lydersen

University of California, Berkeley

USFS, Pacific Southwest Research Station

Outline

- Overview of Rim Fire
- Effects of fuels treatments
 - Census of all pixels across fire perimeter
 - Analysis of proportion high severity within sample landscapes
 - Analysis of severity as fire progresses into a treated area
- Summary

Rim Fire location

- Fire size: 257,314 acres
- Elevation: 870-7900 ft
- Vegetation types:
 - Conifer 68.3%
 - Hardwood 16.3%
 - Shrubland 7.4%
 - Riparian 4.1%
 - Grassland 1.3%
 - Sparse/Barren 2.0%
 - Open Water 0.3%
 - Developed 0.3%

Rim Fire Severity

Severity	
category	Ecological effect
Unchanged	No change to overstory trees;
9%	affects vegetation in understory
	only, includes unburned islands
	within the fire perimeter
Low	Little change in basal area; kills
25%	primarily smaller diameter trees
	and fire sensitive species
Moderate	Greater range in fire effects (26-75%
33%	change in basal area); often
	represents a transition from surface
	to crown fire
High	Most (>95%) of basal area is killed;
33%	associated with crown fire

NRV for percent high severity: 5-10% (Meyer 2015, Journal of Forestry 113: 49-56; Safford and Stevens 2014, PSW-GTR-256)

- Burned from 17 August – 23 October
- 47% of the area burned in the Rim Fire occurred during two large fire spread events (21–22 August and 25–26 August)

Rim Fire publications

- Lydersen et al. 2014
 - Field data from 53 plots in areas previously burned at low-moderate severity
 - Forest Ecology and Management 328: 326-334.
- Lydersen et al. 2016
 - Field data from 175 plots collected the year of and one year post-Rim Fire
 - Fire Ecology 12(3): 99-116.
- Lydersen et al. 2017
 - GIS based analysis of the entire fire area
 - *Ecological applications* 27(7): 2013-2030.

Can fuels management influence the extent of high severity fire?

- Census of all pixels across fire perimeter
 - Effect of treatment type
- Analysis of proportion high severity within sample landscapes
 - How much of landscape needs to be treated?
 - What other factors are important?
- Analysis of severity as fire progresses into a treated area
 - Is fire severity reduced within treated areas?
 - At what distance within a treatment are effects apparent?

Focus on high severity: Ecological relevance

- Large degree of ecological change
 - 94% ΔBA, 99% Δdensity
- 33% of fire area = 74,000 acres
 - NRV 5-10%
- Low natural conifer regeneration following wildfire
- Spatial configuration also important

Percent change in BA and density by fire severity class

Based on 175 plots measured pre- and post- Rim Fire on Stanislaus NF Lydersen et al. 2016, Fire Ecology 12(3): 99-116

Previous Fire Severity and Treatments

Treatment and fire history since 1995

Census of Rim Fire severity

Rim Fire Severity

High
Moderate
Low
Unchanged

Previous fire severity or treatment class

Summary of treatment type census

- Previous high severity had greatest proportion high severity
- Previously untreated/unburned also had greater proportion of high severity
- Rx burns, particularly Rx plus thinning had lowest proportion of high severity
- Mechanical thinning and surface fuels treatment had intermediate amount of high severity
- Some high severity observed in all treatment types

What factors influence fire severity within sample landscapes?

- Sample windows across fire perimeter (GIS)
 - 3 scales: 500, 2500 and 5000 acres
- Proportion high severity in each sample
- Random forests to assess influence of
 - Proportion treated (including previous low-moderate severity wildfire)
 - Fire weather BI and ERC
 - Water balance AET and deficit
 - Vegetation proportion among the most common types
 - 2012 LandFire existing veg

Relative variable importance for % high severity

 $R^2 = 0.46$

Relative variable importance for % high severity

500 acres		2500 acres		5000 acres	
Mean Bl	٠	Mean Bl	٠	% Treated	•
% Treated	•	Mean ERC	•	Mean ERC	•
Mean ERC	•	% Treated	•	Mean Bl	•
Mean Deficit	•	Mean AET	•	Mean AET	•
% Shrubland	•	Mean Deficit	•	% Conifer	•
% Riparian	•	% Conifer	•	% Riparian	•
% Conifer	•	% Shrubland	•	Mean Deficit	•
Mean AET	•	% Riparian	•	% Shrubland	•
% Hardwood	•	% Hardwood	•	% Hardwood	•
% Grassland	•	% Grassland	•	% Grassland	•
I	0.0 0.2 0.4 0.6 0.8 1.0 Relative Variable Importance		0.0 0.2 0.4 0.6 0.8 1.0 Relative Variable Importance	1	0.0 0.2 0.4 0.6 0.8 1.0 Relative Variable Importance

 $R^2 = 0.46$

Partial dependence – 500 acres

Partial dependence – 2500 acres

Partial dependence – 5000 acres

Summary of landscape analysis

- BI, ERC and % treated most important at all scales
- BI had greatest influence at 2 smallest scales, % treated had greatest influence at largest scale
- At smaller scales a greater proportion treated was needed to influence fire severity
 - 50–75% treated for 500 acres
 - 25–60% for 2500 acres
 - 10–40% for 5000 acres

How does fire severity change when a treated area is encountered?

- Generated GIS transects aligned in general direction of fire spread
- Compared fire severity outside treatment to inside at increasing distances from boundary (50 m interval)
 - Comparison of treated and control (untreated) transects
 - Included previous low to moderate severity fire as treated
 - Analyzed high, moderate and low Rim Fire severity separately

Transects in general direction of fire spread

Comparison of untreated and treated in general direction of fire spread

a. Treament transect - moderate incoming fire severity

b. Control transect - moderate incoming fire severity

Fire severity progression

Summary of severity progression analysis

- High and moderate severity fire significantly reduced when burned into fuels treated area
 - High transitioned to moderate
 - Moderate transitioned to low-moderate
- Low severity stayed low, although increased slightly

Conclusions

Importance of fire weather

- BI and ERC reflect weather generally more conducive to burning
 - Lower fuel moisture
 - Greater expected flame lengths
- During 2 spread events fire was also burning under plume dominated conditions
 - Locally more extreme high wind speeds near flaming front
 - Plume formation influenced by both weather and fuels
- Studies analyzing fire outside of plume-dominated fire days did not find significant effect of weather
 - Harris and Taylor 2015, Ecosystems 18: 1192-1208
 - Kane et al. 2015, Forest Ecology and Management 358: 62–79

Fuels Treatments

- Effectively lowered fire severity relative to untreated
 - Lower proportion high severity in sample landscapes
 - Reduced severity within first 50-100 m of treatment
- Prescribed fire appears most effective, especially combined with thinning
 - Pre-existing differences in forest structure?
 - Differences in topography?
- Previous high severity fire associated with high severity reburn
 - Permanent type conversion to non-forest
- Some high severity in all treatment types

High severity within treated areas

- Under high to extreme burning conditions fuels treatments reduce, but likely cannot completely eliminate high-severity fire effects
- Observed high-severity patches may be related to
 - Treatment boundaries if fire severity remained high for a distance prior to decreasing
 - Small spatial scale of treatments relative to incoming fire behavior, (i.e., overwhelming a treatment)
 - Older treatments that may be less effective due to subsequent buildup of fuels
 - Local feedbacks between fire weather, topography, and fuels

No effect of vegetation? Pre- and post-fire structure by severity class

Productivity – marginal effect of AET

Kane et al. 2015 found positive relationship between AET and Rim Fire severity (Forest Ecology and Management 358: 62–79)

Effect of scale

- Smaller landscapes needed larger proportion treated to see an effect
- Important to treat areas of high value
- If goal is to avoid any high severity in area of high value also important to treat the surrounding landscape

Comparison to 2014 paper

- Lydersen et al. 2014
 - Plot data from areas with relatively restored fire regime
 - Plume dominated fire and higher BI associated with moderate-high severity
 - Time since fire >14 years associated with moderate-high severity
 - No comparison to baseline (i.e., unburned)
- Lydersen et al. 2017
 - Included entire core fire area
 - Areas with no previous fire or fuels treatment and previous high severity had greatest % high severity in Rim Fire
 - Higher BI and ERC associated with high severity fire
 - Fuels treatments and previous low-moderate severity reduced fire severity

Additional questions

- Strategic placement of fuels treatments
- Reduced severity on the lee side of a treatment
- Effect of treatment age x type?

Acknowledgements

- Coauthors from Lydersen et al. 2017
 - Brandon Collins (UC Berkeley)
 - Matt Brooks (USGS)
 - J.R. Matchett (USGS)
 - Kristen Shive (NPS)
 - Nick Povak (USFS)
 - Van Kane (U Washington)
 - Gus Smith (NPS/USFS)
- Funding
 - Joint Fire Science Program 14-1-01-23

- Statistical consultation
 - Jim Baldwin (USFS)
- Compilation of fuels treatment and fire histories
 - Becky Estes, Marty Gmelin (USFS)
 - Kent van Wagtendonk (NPS)