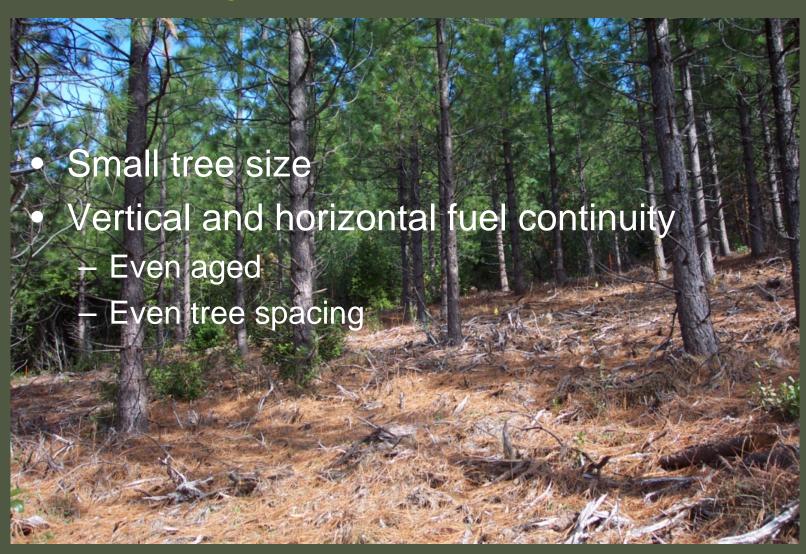


Old paradigm: manage plantations assuming wildfire will be kept out

Trends in fire activity: California



Planted after 1987 Stanislaus Complex 2013 Rim Fire

New paradigm: Plantations increasingly likely to encounter wildfire prior to commercial size

Structure of plantations can pose some challenges for wildfire resilience

Predicting crown scorch/ mortality in hypothetical plantation under different conditions w/ BehavePlus

- Timber litter
 - TI8 long needled pine litter
 - TI9 needle drape
- Logging slash
 - Sb2 moderate logging slash
 - Sb3 heavy logging slash
- Shrub understory
 - Tu5 heavy load needles plus understory shrubs
 - Sh5 shrubs 4-6 ft tall, covering >50% of area

- Live fuel moisture: 80%
- Air temperature: 90 °F

Scott and Burgan 2005

Crown scorch (%) and tree mortality prediction - wildfire conditions

	Wind speed: 0 mph			Wind speed: 7.5 mph				Wind speed: 15 mph		
	% slope			% slope				% slope		
Fuel Type	0	30	60	0	30	60		0	30	60
Needle litter	0-0	0-45	64-100	63-100	71-100	95-100		86-100	89-100	97-100
Logging slash	0-67	80-100	100	100	100	100		100	100	100
Litter + shrubs	30-64	99-100	100	100	100	100		100	100	100

Probability of resilience

Crown scorch (%) and tree mortality prediction – prescribed fire conditions

	Wind speed: 0 mph			Wind speed: 2.5 mph				Wind speed: 5 mph		
	% slope			% slope				% slope		
Fuel Type	0	30	60	0	30	60		0	30	60
Needle litter	0	0	0	0	0	0-26		0	0	0-39
Logging slash	0	0-23	42-100	0-69	15-91	71-100		44-100	60-100	90-100
Litter + shrubs	0	0	20-38	0-3	25-28	70-72		34-53	51-65	85-90

Fine fuel moisture: 9 to 11% Live fuel moisture: 200% Air temperature: 60 °F

Probability of resilience High (<25% mortality) Moderate (25-75% mortality) Very low (>75% mortality)

Small trees benefit the most from light fuels

Probability of surviving a wildfire

Why is so little burning done in young stands?

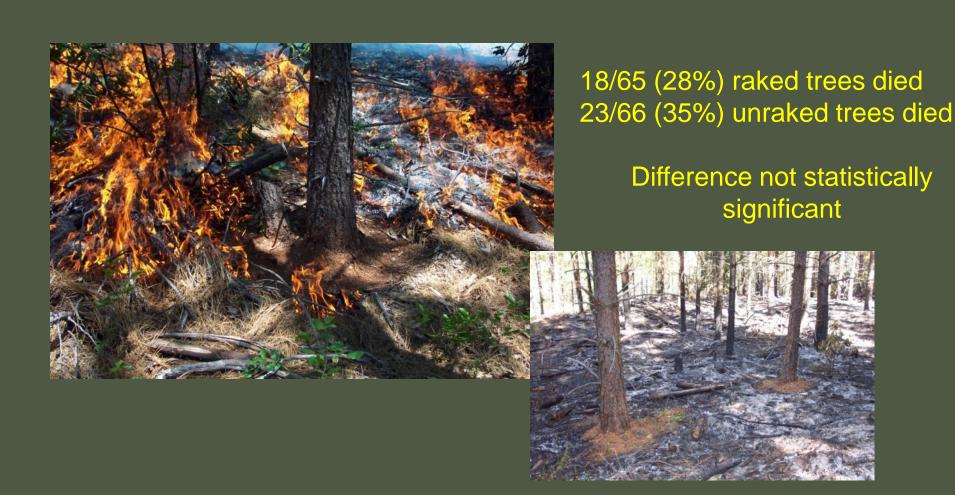
Mechanisms of tree mortality crown scorch bole charring

Scorch height: isotherm of >140°F for over 1 minute

Flame length

Large trees: Thick bark, heavy fuels Small trees: Thinner bark, lighter fuels

Prescribed burning in plantations: tree mortality

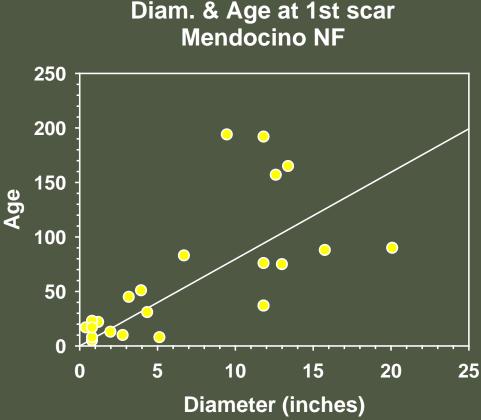

timing – spring fuels – pine litter + masticated brush

	Challenge	vvnitmore
Variable	Р	Р
DBH	0.006	<0.001
CharHigh	0.520	0.035
CharLow	0.293	0.220
% CrownVolScorch	<0.001	0.002

Prescribed burning in plantations: tree mortality

• Fuels raked 1.5 ft from base of randomly selected trees

Prescribed burning in plantations: controlling crown scorch and the value of patience


	Slope °	Survival (%)
Challenge 1	8	91
Challenge 2	5	76
Challenge 3	12	9
Challenge 4	11	85
Whitmore 1	2	90
Whitmore 2	1	100
Whitmore 3	5	95
Whitmore 4	7	91

- Use more backing fire
- Burn when air temperature is cool
 - Burn at 50° vs. 80° ~ 35% reduction in crown volume scorched

What is the ideal age/tree size to introduce fire to young stands? Evidence from historical data

Chips Fire, Lassen NF (2012)

What is the ideal age/tree size to introduce fire to young stands?

- Site specific
 - Site productivity
 - Time to tree size that can survive fire
 - Fuel bed development
 - Needle cast related to basal area
 - Grasses, shrubs
 - Dead fuel additions
 - Pre-commercial thin/ lop and scatter
 - Mastication

Prescribed fire in young stands: final thoughts

Old paradigm

New paradign protects again

Other benefit

Produces w

Option: Pres

vestment ses acceptable if it

Planting units are ideally thought of as future burn units

