Refining regional recharge estimates: considering the water balance and recharge processes

Alan Flint and Lorrie Flint U.S. Geological Survey Yosemite Hydroclimate, Oct 5, 2016

Estimating Recharge

- Recharge is difficult to accurately estimate
- Hydrologic modeling typically makes recharge the error term
- Water balance modeling can be used to improve estimates with calibration of all hydrologic components

Outline of talk

- Water balance
- Conceptualizing a simple water balance model that describes hydrologic processes across large regions
- Model refinements to improve water balance and recharge
 - PET
 - Snow parameterization
 - Soil properties
 - Vegetation seasonality and actual evapotranspiration
 - Groundwater flow modeling

Ē

The Water Balance

Evapotranspiration Precipitation/Snowfall Sublimation Snowmelt Runoff Snowpack Soll Soil Water storage Recharge Fractured or Permeable **Bedrock**

Precipitation = Evapotranspiration + Runoff + Sublimation + Recharge + ▲Soil Water Content

Transient regional scale modeling for the southwest

- Develop a model for basin characterization based on the conceptual model
- Geospatial dataset of the physical and climatic setting
 - Digital Elevation Model
 - Geology
 - Soils
 - Potential Evapotranspiration
 - Air Temperature
 - Precipitation

is central to

Basin Characterization Model

Runoff

Recharge

Basin Characterization Model

Solar Radiation

Ē

Daily Potential Evapotranspiration

Potential Evapotranspiration

Basin Characterization Model

Snow covered area: accumulation and melt seasons

Year round snow: glaciers

NWS Snow 17 Parameter Calibration Spatially distributing coefficients (87 courses)

mm/month

SWE,

Measured SWE

Spatially distributing snow accumulation and melt parameters to capture the range of snow conditions throughout California

Seasonal Timing of Runoff for Proofing Snow Module

----- Series1

-Series2

Soil Moisture Monitoring

(headwaters of Mark West Creek)

Pepperwood Preserve Grassland Soil Moisture Monitoring

Data US Geological Survey

Calculating Basin Discharge from Recharge and Runoff to Match Streamflow Measurements

Basin Characterization Model

Soil Properties

- SSURGO soils have field capacity of -0.03 MPa and wilting point of -1.5 MPa
- Plant available water is between these values

Soil Properties

- SSURGO soils have field capacity of -0.03 MPa and wilting point of -1.5 MPa
- Texture can be used to estimate field capacity and wilting point
- We used -0.01 MPa for field capacity and -3.0 MPa for wilting point to increase water holding capacity

Using Soil Physics Equations to Develop New Soil Properties

Campbell, G.S., 1985) Soil physics with basic, transport models for soil-plant systems, Elsevier, New York, 150pp.

Gupta, S.C. and Larson, W.E., 1979, Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density, Water Resources Research Vol. 15, No.6.

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., and Bloodworth, 2003, Effect of soil organic carbon on soil water retention, Geoderma, 116, pp61-76.

Saxton, K.E. and Rawls, W.J., 2006, Soil water characteristic by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J. 70:1569-1578.

Soil Water Storage Capacity

SSURGO hydraulic properties

Hydraulic properties from SSURGO texture

SSURGO hydraulic properties

Hydraulic properties from SSURGO texture

Testing Recharge Results

- Comparing new results against estimates of basin recharge
 - Chloride Mass Balance
 - ModFlow
 - Death Valley Regional Flow System
 - Lower Walker Valley, Tooele Valley, Utah Valley
 - Discharge Measurements
 - California ModFlow Model

Great Basin Recharge

Great Basin Recharge

Alluvial valleys 2.01 m soil depth SSURGO hydraulic properties

Great Basin Recharge

Alluvial valleys 4 m soil depth SSURGO texture for hydraulic properties

Ongoing Model Development

- Recent research to provide gridded estimates of actual evapotranspiration are allowing the incorporation of vegetation specific seasonal evapotranspiration
- This serves to constrain another component of the water balance, reducing uncertainty in recharge estimates

AET Data Sets Available for Analysis

Data Sets	Time Period	Time	Domain	Scale
BCM	1896-2015	Monthly	SW BCM	270m
Reitz	2000-2013	Yearly	US	1km
NASA	2007	Daily	SW BCM and Global	5km
DAU	2010-2015	Monthly	CA State	watershed
Jim Roche	2003-2011	Yearly	Tuolumne-Merced	270m

Ē

Estimates of Actual ET

Annual, Meredith Reitz, USGS Reston

Monthly 2010-2015 Formation Environmental LCC

Actual ET calculated from NDVI and flux towers (Goulden and Bales 2014)

(mm/year) High : 1120 Low : 0

Merced River Basin 2003-2011

Actual ET

NDVI and flux measurements

(mm/year) High : 1120 Low : 0

BCM SSURGO hydraulic properties

BCM SSURGO properties from texture

Toulumne Soil Thickness and K Factor to Match ETa FC=-0.033 MPa WP=-15.0 MPa

Toulumne Soil Thickness and K Factor to Match ETa FC=-0.01 MPa WP=-30.0 MPa

NASA ETA, 2007

Matching Annual Estimates of Actual ET

Matching Annual Estimates of Actual ET

Allowing Actual ET to Equal PET

Limit Actual ET using variable K Factor <=1

Ongoing Refinements

- Incorporation of species' specific monthly evapotranspiration
 - To enable more realistic seasonality
 - To enable the representation of disturbance
- Modeled soil water content at multiple measurement locations statewide

 Recharge comparisons to Modflow model estimates

Summary

- The BCM was developed on the basis of fundamental processes, observations, and physics
- Calibration of the various components are used to improve the estimates of the water balance and recharge
- Mapped soil properties do not represent the rooting zone, they underestimate actual ET and overestimate recharge
- Combining remote sensing and field measurements can help develop actual rooting depth and soil water storage
- Increasing soil water holding capacity improves estimates of actual ET and recharge