Global Change and the Vulnerability of Chaparral to Acute Drought versus Chronic Drought

Southern California Chaparral Symposium, Arcadia CA Stephen D. Davis, Pepperdine University, Malibu CA, 14 May 2018 Ceanothus spinosus

Ceanothus megacarpus

Malosma laurina

Malosma laurina

Acute Drought Causes Differential Dieback

Acute Drought Causes Differential Dieback

63 pts. 252 obs.

Caused by: ➤ Increased fire frequency -- Ceanothus

megacarpus

Caused by: Increased fire frequency -- Ceanothus megacarpus

Drought-induced mortality -- Ceanothus spinosus

Caused by:
 Increased fire frequency
 -- Ceanothus megacarpus

Drought-induced mortality -- Ceanothus spinosus

Fungal-induced mortality? -- Malosma laurina

Caused by:
 Increased fire frequency
 -- Ceanothus megacarpus

Drought-induced mortality -- Ceanothus spinosus

Fungal-induced mortality? -- Malosma laurina

Question

What causes dieback in *M. laurina*?

- > Water stress-induced air blockage of xylem?
- Solid blockage of xylem?

Dieback is **not** caused by water stress-induced air blockage but **solid blockage** of xylem

Healthy Control

Dieback

Dieback is **not** caused by water stress-induced air blockage but **solid blockage** of xylem

Healthy Control

Dieback

H1: The cause of observed dieback is chronic drought, predisposing *M*. *laurina* to fungal infection and spread

H1: The cause of observed dieback is chronic drought, predisposing *M. laurina* to fungal infection and spread

H2: Koch's Postulate will elucidate the fungal pathogen causing dieback

H1: The cause of observed dieback is chronic drought, predisposing *M. laurina* to microbial infection and spread

H2: Koch's Postulate will elucidate the fungal pathogen causing dieback

H3: Both water starvation and carbon starvation

will enhance growth rates of the fungal pathogen

H1: The cause of observed dieback is chronic drought, predisposing *M. laurina* to fungal infection and spread

H2: Koch' s Postulate will elucidate the fungal pathogen of dieback

H3: Both water starvation and carbon starvation will enhance fungal growth rates

H4: The dehydration tolerance of the pathogen will exceed the dehydration survival limits of the host

Map name: SAMO_CWPPstreamshydrologyMap85x11c.mxd, Jun 25, 2010 robert_s_taylor@nps.gov

Score	Dieback
5	0-20%
4	20-40%
3	40-60%
2	60-80%
1	80-99%
0	Dead

Plant Vigor	Control	3.42	1.5	3.6	3.6	3.81	4.95	5.0	3.12	4.13	4.04
(score)	Dieback	0.5	0.9	0.4	0.9	0.7	1.1	1.0	0.5	0.9	0.9

Plant Vigor	Control	3.42	1.5	3.6	3.6	3.81	4.95	5.0	3.12	4.13	4.04
(score)	Dieback	0.5	0.9	0.4	0.9	0.7	1.1	1.0	0.5	0.9	0.9

Plant Mortality	Control	0.0	25	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(%)	Dieback	12	19	56	39	39	18	44	52	26	41

Plant Vigor	Control	3.42	1.5	3.6	3.6	3.81	4.95	5.0	3.12	4.13	4.04
(score)	Dieback	0.5	0.9	0.4	0.9	0.7	1.1	1.0	0.5	0.9	0.9

Plant Mortality	Control	0.0	25	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(%)	Dieback	12	19	56	39	39	18	44	52	26	41

Plant Fitness	Control	72	11	53	100	76	92	84	64	85	100
(% flowering)	Dieback	5.6	2.6	5.6	0	0	0	0	0	11.9	0

Acute Drought Chamber Experiment

Chronic Drought Field Experiment

Acute Drought Chamber Experiment

Chronic Drought Field Experiment

Acute Drought Chamber Experiment **Chronic Drought Field Experiment**

n=16

H2: Koch's Postulate will elucidate the fungal pathogen causing dieback

H2: Koch's Postulate will elucidate the fungal pathogen causing dieback

Positive cultures (%)

Dieback Adult Plants

distal canker xylem 85% canker xylem 100% canker phloem 95% proximal canker xylem 45% **Dieback Resprouts** xylem 45%

H2: Koch's Postulate will elucidate the fungal pathogen causing dieback

Positive cultures (%)

(n = 20)

Control	Plants
	xylem
r	bhloem

Dieback Adult Plants

distal canker xylem canker xylem canker phloem proximal canker xylem **Dieback Resprouts** xylem

The fungal pathogen will reduce stem water transport (Ks)

Toilet Plunger Method

Sperry Method

The fungal pathogen will reduce stem water transport (Ks)

H2: Koch' s Postulate elucidates the fungal pathogen causing dieback

Genetic Primers > 99% Match to *Botryosphaeria dothidea*

- Internal Transcribed Spacer (ITS)
- Beta tubulin 2 gene (Bt2)
- \succ Elongation Factor 1 α (EF1)

(Slippers et al. 2004).

H3: Both water starvation and carbon starvation will enhance fungal growth rates

Non-Irrigated

Water Starved

Defoliated

Carbon Starved

Fungal Inoculation

Non-Irrigation: Impact on Plant Water Status

Non-Irrigation: Impact on Plant Water Status

H3: Both water starvation and carbon starvation enhance fungal growth rates

H3: Both water starvation and carbon starvation enhance fungal growth rates

H4: The dehydration tolerance of fungal pathogen exceeds the dehydration survival limits of the host

Conclusions

C1: Dieback is not caused by water stress-induced air blockage but solid blockage of xylem conduits (fungal-induced)

C2: The ultimate cause of dieback is chronic drought: the proximate cause is an opportunistic, endophytic fungus

C3: Both water starvation and carbon starvation enhance fungal growth

C4: The dehydration tolerance of the fungal pathogen exceeds the survival limits of the host

Recommendations

> Reseed at Higher Elevations
> Because limited seed transport uphill

Higher elevations = higher precipitation

Higher elevations are becoming warmer (seedlings survive -6C; adults survive -9C)

Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (2018). *Indicators of Climate Change in California*.

Acknowledgements

This research was funded in part by NSF IUSE award DUE-1525878, NSF REU site award DBI-1560352 and the Natural science Division of Pepperdine University. Special thanks to the class members of Biology 390 during the fall semester of 2015.