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The extent to which the apparent increase in wildfire incidence and burn area in California from 1990 to 2006 is affected by
population and temperature increases is examined. Using generalized linear models with random effects, we focus on the
estimated impacts of increases in mean daily temperatures and populations in different counties on wildfire in those
counties, after essentially controlling for the overall differences between counties in their overall mean temperatures and
populations. We find that temperature increase appears to have a significant positive impact on both total burn area
and number of observed wildfires. Population growth appears to have a much less pronounced impact on total burn area
than do annual temperature increases, and population growth appears to be negatively correlated with the total number of
observed wildfires. These effects are especially pronounced in the winter season and in Southern California counties.
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1. INTRODUCTION

The Western USA in general, and California in particular, has exhibited a noticeable increase in both wildfire frequency and total annual area
burned over the past several decades (Arno and Allison-Bunnell, 2002; Westerling et al., 2003; Stephens, 2005; Westerling et al., 2006;
Miller et al., 2009). A possible explanation for these increases is climate change, as increased temperatures may cause wildfires to ignite
more easily and become more difficult to extinguish and also cause land to become increasingly arid and its vegetation flammable. In
addition, as the vast majority of these wildfires are ignited as a result of human activity (Keeley, 1982), the observed increase in wildfire
may in part be attributed to human population increases in California over this same time period. The goal of this paper is to determine
and quantify the extent of the role played by human population and temperature increase in affecting fire frequency and area burned. To this
end, we employ spatial-temporal wildfire, population, and mean temperature data in California for the 17 years spanning from 1 January
1990 to 31 December 2006, using California counties as the spatial units of analysis, and examine the estimated coefficients in generalized
linear models (GLMs) in order to discern the relative impacts attributable to population and temperature change.

2. DATA

The wildfire data in this analysis were cataloged and compiled by the US Geological Survey, Western Ecological Research Center, and were
provided to us by CalFire. They consist of wildfire occurrences on CalFire protected areas from 1 January 1990 to 31 December 2006. The
dataset consists of several thousand wildfires and represents an accumulation of a wealth of wildfire data collected from an assortment of
different sources. The wildfire dataset is perhaps exceptional in its completeness and is believed to be at least approximately complete for
wildfires down to 10 ha, since 1990. Keeley (1982) analyzed historical wildfire activity in this region and estimated that 16.2% of wildfires
(or 13.1% of the area burned) in this region were caused by lightning, and the remainder of the ignitions were attributable to human activities.

Wildfire burn areas appear often to be roughly Pareto or tapered Pareto distributed (Cumming, 2001; Malamud et al., 2005), and hence,
the completeness of a wildfire dataset may be assessed by observing the extent to which the survivor function of the areas burned appears to
be approximated by the tapered Pareto distribution as suggested in Schoenberg et al. (2003). Figure 1 shows that the wildfire sizes are well
approximated by a tapered Pareto law for fires above approximately 5 ha; such fires account for over 98% of the total area burned in our time
frame. The data are organized by county; for each of the 58 counties in California, we have records of all observed wildfires on CalFire
protected areas occurring during the selected time period, as well as population estimates by year, and daily high temperature. Daily high
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temperature records for each county were obtained from www.almanac.com/weather/history/CA, and in cases where more than one reporting
station was available for a county, the average of records from those stations was used. Population data are publicly available from the
California Department of Finance; see www.dof.ca.gov/research/demographic/reports/view.php. Counties with virtually no recorded wildfire
activity, or containing Cal Fire lands but providing their own fire protection and thus not included in the dataset, were discarded from
the analysis; these were the following nine counties: Alpine, Imperial, Los Angeles, Marin, Mono, San Francisco, Sierra, Sutter, and
Ventura. The focus of this paper is on the remaining 49 counties with 9996 county-months for the analysis.

3. METHODS

Note that the results of a simple linear regression of area burned or number of fires on temperature and population would say little about the impact
of temperature and population changes on wildfire, as most of the variation in the covariates would be due to overall differences in temperature and
population between counties. The regression estimates would be dominated by the correlation between characteristics (average population and
temperature) of the counties and wildfire activity in those counties, which is not our focus here. Instead, we seek to identify the extent to which
changes in population and temperature, within a given county, appear to influence burn area and number of wildfires. Further, we do not wish
to combine similar counties but instead leave each of the 49 counties as a separate entity so that spatial heterogeneity of the results may be inves-
tigated. We incorporate a random effects model to account for the fact that different counties will have different population sizes and mean tem-
peratures and correspondingly quite different numbers of wildfires and area burned between them. We also include a random effect term for the
month of the year to emphasize the temporal aspect of the analysis and to account for varying temperatures across seasons during the year.

A histogram of the total number of observed wildfires per county per month (Figure 2a) closely resembles the exponential distribution.
Note also that observed wildfires per month must be non-negative, so a random effects regression model assuming roughly Gaussian error
terms seems inappropriate. Instead, in consideration of Figure 2a, we propose the use of a random effects GLM with a log-link function, to
model this response variable as a function of population growth and temperature increase. The fact that the number of observed wildfires in a
county-month is count data suggests fitting a Poisson regression model in particular. The distribution of total area burned in each county-
month (Figure 2b) appears similar to that of the wildfire frequency data, so we fit a Poisson GLM with a log-link when modeling the total
area burned as the response variable as well. A log-link function for area burned seems appropriate considering Figure 3, where we see a
roughly log-linear relationship between change in log-area burned from log-mean area burned in a county plotted against each of our two
covariates, population, and temperature.

Overdispersion is frequently a concern when fitting data with Poisson models. The burn area data do exhibit this problem, having a var-
iance considerably higher than the mean. To account for the overdispersion present in monthly burn area, we fit a model containing an ob-
servation-level random effect term (Elston et al., 2001). These considerations suggest models of the form:

Yijke Poisson exp μ1i þ v1j þ τ1ijk þ α1 Pij þ β1 Tij

� �� �
(1)

and

Zijke Poisson exp μ2i þ v2j þ τ2ijk þ α2 Pij þ β2 Tij

� �� �
(2)

where Y and Z denote the total area burned and number of observed wildfires, respectively, index i represents the county, index j represents the
month and k the year in consideration, P denotes population, and T is temperature. Parameters μ1i and μ2i represent the baseline for the mean

Figure 1. Observed survivor function of the areas burned in California wildfires from 1/1/1990–12/31/2006, along with the survivor function (1�F(x))
corresponding to the tapered Pareto distribution fit by maximum likelihood
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number of wildfires and total area burned for county i across all months, respectively, parameters ν1j and ν2j represent the baseline for the mean
number of wildfires and total area burned for month j, α1 and α2 denote the estimated coefficients for population increase, and β1 and β2 the
estimated coefficients corresponding to temperature increases. The observation-level random effect term given to each data point is denoted τ.

Models (1) and (2) allow us to focus on temperature increases and population growth within each county and the effect of these changes on
wildfire incidence and total area burned, while essentially controlling for the differences in overall population and mean temperature between
counties and months.

Models (1) and (2) were initially fit using data from all seasons, for each county-year, leaving out the random effects for months. However,
a problem with this is that a particularly cold winter could average out an exceptionally hot summer in a given county and thus the effects of
temperature changes on our response variables would be masked. To account for this, we added random effect terms for month, ν1j and ν2j,
and fit the models (1) and (2) to all the county-months as well as separately after splitting the data temporally into fire seasons delineated as
suggested in Nichols et al. (2011). The first season, the most active season and covering the summer months, extends from 25 May to 26
September. This is followed by an intense fall season characterized by fewer but larger fires. This season begins 27 September and continues

Figure 2. (a) Histogram of number of fires per county-month. An exponential density fit by maximum likelihood is shown; (b) Histogram of total area burned
per county-month. An exponential density fit by maximum likelihood is shown

Figure 3. (a) Change in population from county-mean population versus change in log burn area minus log county-mean burn area; (b) Change in temperature
from county-mean temperature versus change in log burn area minus log county-mean burn area. Least squares lines overlaid
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until 7 November. The remaining months, 8 November to 24 May cover the mostly dormant, winter season. This seasonal splitting allows us
to investigate whether the overall trends are present in these shorter time periods, which have more consistent weather throughout them.

Each county-month has its own background rate of total area burned or number of fires estimated in the models. The parameters α1, α2, β1,
and β2, which are constrained to be the same across all counties, are influenced then by changes in population and temperature within a
county. After both population and temperature have been standardized (converted to z-scores), the parameters are also in standard units.
Table 1 shows the root mean square (RMS) of the county-wide month-to-month variations in the covariates in each subset of the data being
analyzed. Thus, for instance, the size of a typical increase in population from one year to the next is 11,644 for the southern counties and
roughly 2000 for the coastal and inland counties. The population data for each county are annual, and thus, the RMS of the population
changes from 1 year to another is identical to 3813 for each of the seasonal subsets. We fit all of our models by Laplace approximation using
R software (2013).

A mapping of California wildfires (Figure 4) suggests a possible grouping of counties for an improved spatial analysis. We thus also re-fit
models (1) and (2) using only subsets of the data, such as data from all counties but only in fall, or data from the entire year but only for
coastal counties, and so on. Tables 2, 3, and 4 present the results of 14 fitted models, all of which follow either Equation (1) or (2), but differ
in the data being used to fit the model, either spatially or temporally.

4. RESULTS

Figure 5 displays the random effects for our models. The estimated random effects for county show correlation between fire activity and total
burn area, as we might expect. Southern California and Northern California both appear to have low and high activity counties, although the
southernmost part of California is considerably active (Riverside and San Diego counties). The estimated monthly random effects reveal, not
surprisingly, that the hot summer months tend to have both larger and more frequent fires. The curve for area burned has a spike in October,
which is caused by the year 2003. In 2003, San Diego County had over 150,000 ha burned in what was called the 2003 Fire Siege.

Table 1. Root mean square of within-county differences, between 1month and the next, of the covariates used to fit models (1) and (2),
using various subsets of the dataset

Entire year Winter Summer Fall Coastal Inland Southern

RMS of month-to-month temperature changes (oF) 4.31 1.18 1.52 2.82 3.74 4.99 3.29
RMS of month-to-month population changes (people) 3813 3813 3813 3813 2205 1821 11644

RMS, root mean square.

Figure 4. Map of California showing fire locations. Areas of different shades represent possible grouping of counties for spatial analysis
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Table 2 shows the results for the models fit with data for all months and for all counties. Temperature has a positive slope in both models,
meaning higher temperatures are associated with increasing total area burned and fire frequency. Area burned (model 1) increases along with
population and temperature, but typical temperature variations appear to have a much stronger effect on area burned than do typical population
increases. Indeed, one may interpret what the fitted model implies for a given county given a typical increase in population or temperature as
indicated in Table 1: an increase of about 4.31 °C (1 RMS temperature increase) in a typical county would correspond to an expected increase of
about 146% (±4.8%) in its monthly number of wildfires (because exp{0.209* 4.31} ~ 2.461) and an expected increase of about 31% (±1.3%) in
its monthly number of observed wildfires (exp{0.063* 4.31} ~ 1.312). Meanwhile, a typical jump in population of 3813 people would
correspond to an increase in a typical county’s annual area burned of about 0.09% (±0.1%) (0.024* 3813/100,000} ~ 1.00093) and a decrease
in its total annual number of observed wildfires of about 0.15% (±0.05%), (exp{�0.040 * 3813/100,000}~ 0.9985).

The fact that typical monthly temperature variations appear to outweigh population increases in influencing area burned and number of
observed wildfires is hardly surprising, because wildfires are well known to be more prevalent and often larger during especially hot years
(Pyne et al., 1996; Johnson and Miyanishi, 2001; Moritz et al., 2005).

The result of the fitted model (2) indicating that population increases tend on average to correlate with decreased fire frequency may seem
curious. It is conceivable that as a county becomes more urbanized and developed, there is less burnable land remaining and thus decreased
potential for a wildfire to ignite. Sonoma County is a prime example. From Figure 6, one sees that population has increased steadily in
Sonoma County over the observed time interval studied here, while the number of observed wildfires has decreased sharply. The least-
squares fit is shown and confirms the downward trend.

Table 2. Estimated coefficients in models (1) and (2), using data from all counties and months

Data from entire year α β

Model 1 {response = area burned (ha)} 0.024 ha/100,000 increase in population (0.032) 0.209 ha/°C (0.011)
Model 2 {response = no. of wildfires} �0.040 wildfires/100,000 increase in population (0.013) 0.063 wildfires/°C (0.003)

Standard errors are in parentheses. Coefficients in bold are not significant at 0.10 level. All models in this paper fit using the “glmer”
function in the “lme4” package in R.

Table 3. Estimated coefficients for population and temperature using temporally split data

Seasonal models Summer Winter Fall

Model 1 {response = area burned (ha)} α1 (ha/100,000 increase
in population)

0.204 (0.075) �0.018 (0.043) 0.056 (0.050)

β1 (ha/°C) 0.210 (0.043) 0.368 (0.064) 0.226 (0.044)
Model 2 {response = number of fires} α2 (wildfires/100,000 increase

in population)
�0.013 (0.023) �0.043 (0.026) �0.038 (0.026)

β2 (wildfires/°C) 0.047 (0.011) 0.182 (0.026) 0.065 (0.014)

Each model was fit using exclusively data from either summer or winter or fall. Standard errors are in parentheses. Coefficients in bold
are not significant at 0.10 level.

Table 4. Coefficients for models fit using spatially split data

Regional models Coastal Inland Southern

Model 1 {response = area burned (ha)} α1 (ha/100,000 increase in pop.) 0.040 (0.053) 0.036 (0.047) �0.072 (0.064)
β1 (ha/°C) 0.290 (0.024) 0.562 (0.020) 0.405 (0.045)

Model 2 {response = number of fires} α2 (wildfires/100,000 increase
in population)

0.020 (0.025) �0.017 (0.020) �0.07 (0.018)

β2 (wildfires/°C) 0.116 (0.008) 0.150 (0.010) 0.119 (0.013)

Divided into coastal, inland, and Southern California regions, as shown in Figure 4. Standard errors are in parentheses. Coefficients in
bold are not significant at 0.10 level.
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Table 3 shows the coefficients for our models fitting the data split according to wildfire seasons. These models do not contain the monthly
random effect term seen in models (1) and (2) and instead are of the form:

Yijke Poisson exp μ1i þ τ1ijk þ α1 Pij þ β1 Tij

� �� �
(3)

and

Zijke Poisson exp μ2i þ τ2ijk þ α2 Pij þ β2 Tij

� �� �
(4)

where parameters μ, τ, α, and β are defined as in models (1) and (2). With this temporally focused analysis, we see that as in the entire-year
fits of models (1) and (2) from Table 2, temperature increases are associated with increases in both total area burned and fire frequency. Pop-
ulation increases, however, are associated with decreases in the number of observed wildfires in a county. Our discussion thus shifts to the
seasonal variation in effect size between temperature and population.

Figure 5. (a) Estimated random effect of county for area burned; (b) Estimated random effect of county for number of fires; (c) Estimated random effect of
month for area burned; (d) Estimated random effect of month for number of fires

Figure 6. (a) Sonoma County’s population over time; (b) Sonoma County’s annual number of observed wildfires versus Sonoma County’s population, with a
least squares line overlaid
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The fits for model (1) in Table 3 show that the increases in total area burned attributable to population increases are most evident in the
active summer season, less so in the intense fall season and considerably less substantial in the dormant winter season. Somewhat surpris-
ingly, it is the warm summer season’s total area burned and number of wildfires that appears to be least affected by changes in temperature. In
the fit for summer, one sees a 37.6% increase in burn area corresponding to a 1 RMS (1.52 °C) increase in temperature, which is considerably
lower than the 54.4% and 89.2% increases in burn area corresponding to comparable temperature changes in winter and fall, respectively. In
terms of wildfire activity, this same 1 RMS increase in temperature is associated with a 7.5% increase in number of fires, which is again less
than is seen in winter and fall, with changes of 23.9% and 20.0%, respectively.

It is worthwhile to note that fall has the highest variability in temperature of the three seasons (1 RMS is 2.82 °C); if instead of a 1 RMS
increase, we consider a 1 °C increase in temperature for each season, the fitted seasonal model parameters from Table 3 suggest that winter

Figure 7. Binned plots comparing observed monthly number of wildfires with fitted monthly number of wildfires (a,b), binned by population and temperature,
respectively; observed monthly total area burned with fitted monthly total area burned (c,d), binned by population and temperature, respectively; and observed
monthly number of wildfires with fitted monthly number of wildfires (e,f), binned by changes in population and changes in temperature, respectively. The bin
sizes were determined so that each bin has the same number of points, resulting in different ranges for each bin. Fifteen bins were used for each plot. Ninety-

five percent confidence intervals shown for each point
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would have a 44% increase in monthly burn area, whereas fall and summer would have increases of only about 25%. Note that the fall season
includes the most area burned for any single county-year in the dataset; this is partially attributable to the 2003 Fire Siege in San Diego
County. The fall season accounts for 30% of all area burned in the data yet represents only 11% of the total number of fires.

Considering now changes in population, total area burned in summer and number of fires in winter are the most significantly affected. The
effect of population is not as pronounced as that of temperature, but is present, and appears to follow a pattern qualitatively similar to that for
the entire year; population increases are associated with increases in area burned, but a decrease in fires ignited. In summer, a 1 RMS change
in population corresponds to a 0.8% increase in total burn area yet a not statistically significant 0.04% decrease in number of fires. The same
population increase (3813 people) in winter corresponds to a 0.2% decrease in wildfire activity.

Figure 4 displays a map of California wildfire locations in the 49 counties used in our analysis. Three very distinct clusters are visible: fires
in coastal counties, counties with fires east of the San Joaquin and Sacramento Valleys and west of the Sierra Nevada mountain range, and
counties in southern California. We divide the data spatially referring to the darkest shaded cluster as the coastal region, the medium gray
shaded area as the inland region, and the lightest shaded as the southern region.

Coefficients for the spatially grouped data can be seen in Table 4. The fits to model (1) indicate that population increases have their stron-
gest effect in the southern region, where a typical population change of 11,644 people results in a 0.85% decrease in both total monthly area
burned and number of wildfires. Population’s effect is only significant in the southern region and then only for number of fires. As in the
entire-state analysis (Table 2) and the temporally divided analysis (Table 3), population increases appear to be associated with decreases
in observed wildfire frequency, while temperature increases are associated with increases in fire activity in all three regions.

Temperature increases, meanwhile, are significant across all regions and for both burn area and wildfire frequency. Temperature’s effect is most
strongly seen in the inland region, where a 1 RMS increase in temperature is associated with a 111% increase in wildfire activity, whereas a com-
parable change in the southern and coastal regions produces 48% and 54% increases, respectively. A similar trend is seen for total area burned,
where comparable temperature changes affect the inland region approximately four times as much as either the coastal or southern regions.

It is important to assess how well these models actually fit the data. The standard deviation of the monthly number of observed wildfires
across all county-years in the dataset is 4.84 fires. This may be compared with the standard deviation of the residuals for model (2) of 2.92
fires; the model (2) explains nearly 40% of the variation observed. Correspondingly, the standard deviation of annual total area burned across
all county-months is 1959 ha, whereas the residual standard deviation for model (1) is 1954 ha; model (1) accounts for only 0.3% of the
observed variation in monthly burn area changes. This percentage is small because of the effect of the outlier San Diego, 2003, having a
large residual. When we remove this point from the data, model (1) accounts for 14% of the variation in monthly burn area changes.

Figure 7 shows binned plots comparing observed responses with fitted responses. From Figure 7a and 7b, one sees that the model (2)
predicts number of fires very accurately; we see a clear linear relationship between actual and fitted number of fires, whether we bin by
population or temperature. Figure 7c also shows a closely linear relationship between observed and fitted annual burn areas, although from
Figure 7d, when binned by temperature, the relationship shows some mild departures from linearity. The outlier seen in Figure 7c contains
San Diego County, 2003.

As discussed earlier, the coefficients in the models are influenced by changes in population and temperature. Thus, we can also check themodel
with binned plot where we are not simply binning by temperature or population, but by the change in each of those variables from the year 1990 to
any given year. Figure 7e and 7f shows these plots, and in both cases, we do see a linear structure indicating rather satisfactory fit overall.

5. DISCUSSION

The random effect Poisson regression models for total area burned and total number of observed wildfires as functions of county-wide tem-
perature increases and population increases suggest that temperature increases are positively associated with both total area burned and num-
ber of observed wildfires, which is not surprising. The models suggest that far more of the variation in area burned and number of wildfires
may be attributable to changes in temperature than to changes in population, especially in the coastal and inland counties. The variability in
these effects between spatial locations is extremely pronounced. This is most clearly seen in differences between the fitted models for the
coastal and Southern California regions, where population growth and temperature appear to exhibit nearly opposite effects on total burn
area and fire frequency.

It is important to note that the observations here are only for the time span 1/1/1990 to 31/12/2006 and are only for wildfires on CalFire
protected lands; so further investigation may be necessary to confirm these results more generally. Of course, wildfire ecology is extremely
complex (Pyne et al., 1996; Johnson and Miyanishi, 2001; Moritz et al., 2005), and several important covariates, such as windspeed,
precipitation, drought indices, bark beetle populations, cloud cover, and so on, may act as confounding factors in our analysis. Future work
may include the use of Burning Index (BI) and/or the variables determining the BI as covariates, although some previous analyses have
shown the BI not to be an accurate predictor of wildfire incidence or area burned in Southern California (Schoenberg et al., 2007; Schoen-
berg et al., 2009; Xu and Schoenberg, 2011). In addition, the model with total area burned as the response had highly skewed residuals and
several highly influential observations. Further, while the completeness of this dataset is thought to be rather exceptional, some missing
observations may have influenced the results here. The results here should be tested and confirmed in the future with other datasets and
for other spatial-temporal regions.
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