Observations from drought in the Sierra Nevada: evapotranspiration, climate & regolith weathering

Roger Bales

Questions motivating research

Response of southern Sierra water cycle to drought?

How does forest vegetation cope with extended dry periods?

Is the ongoing mortality a new pattern, or a natural cycle?

How do forest density, regolith water storage, other factors buffer drought?

Hydrologic context

Mar 27, 2010

Mar 29, 2015

://earthdata.nasa.gov/labs/worldview

Apr 2, 2016

Basic water balance

Precipitation = Evapotranspiration + Runoff + Δ Storage

snow & rain

Evapotranspiration refers to evaporation, sublimation plus water use by vegetation

Data from DWR, adapted from Nor. Cal. Water Assn.

Development of the drought

Intensity:

D0 Abnom ally Dry D1 Moderate Drought

D2 Severe Drought

D3ExtremeDrought

http://droughtmonitor.unl.edu

D4 Exceptional Drought

Drought originates from a deficiency of precipitation over an extended period of time – usually a season or more – resulting in a water shortage for some activity, group, or environmental sector

1100 yr drought record

Reconstructed flows of Sacramento R. Color shading marks below-median periods <u>></u>4 yr 1-5 per century

The current experiment: 2011-2015 drought

Context: century-long experiment: suppressing fire

Kyburz, S. Fork American R., 5000'

Photo: Margot Wholey

Photo: Margot Wholey

Ground measurements of precipitation, evapotranspiration, discharge, soil-moisture storage, snowpack storage

(Shorthair not available)

Flux-tower measurements

Cumulative water-year

Bales et al., almost submitted

Scaling evapotranspiration (ET)

Annual ET measured by flux towers, correlated with MODIS NDVI (greenness)

ET calculated across the southern Sierra using this calibration

Goulden & Bales, 2014

Kings R. basin water balance

$P = ET + Q - \Delta S$

Bales et al., almost submitted

<u>Matric potential</u> at 2-m depth at Providence showed recharge during drought, but not at Soaproot

Soil moisture also showed gradual decline during drought, and no recharge below 1-m depth at Soaproot

Interpretation

Regolith storage buffers drought if mean annual precipitation exceeds annual evapotranspiration
Tree dieoff greatest where recharge to deeper root zone was limited
Parts of the forest reached a tipping point

Management response: restore (thin) forest \rightarrow reduce ET

Thinned unit w/ control in background

E. Knapp photo

Oak savannah

400 m

Predictions require spatial information:

- Climate (precipitation & temperature)
- Vegetation density
- Evapotranspiration
- Regolith water storage

Next: predicting regolith attributes

Acknowledgements: M. Conklin & many collaborators, students; research support through NSF Critical Zone Observatory and other sources.

