Aquatic Ecosystem Response to Timber Harvesting for the Purpose of Restoring Aspen

Ken Tate, Bobette Jones, and Monika Krupa

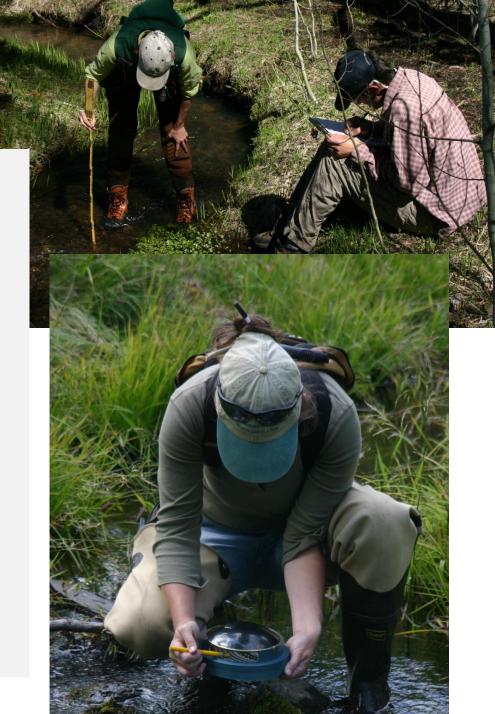
Lassen National Forest, Pacific Southwest Region, and UC Davis

Many riparian aspen stands encroached by conifers Conifer removal is an effective release strategy

EQUIPMENT

IN, AREA

Jones et al. 2005 Restoration Ecology


Some Concerns

- Reduce stream canopy cover?
- Increase stream temperature?
- Degrade water quality and aquatic habitat?
- Compact soils?

Test Concerns

- Lassen National Forest
- Significant conifer encroachment.
- Active aspen restoration program.
- Collaborative study to evaluate possible aquatic resource impacts.

				plos.org (create account	sign in
PLOS ONE	Subject Areas	For Authors	About Us	Searc	ch	٩
					a	dvanced search
GOPEN ACCESS 👔 PEER-REVIEWED				1,912 views	7 SAVES	15 SHARES

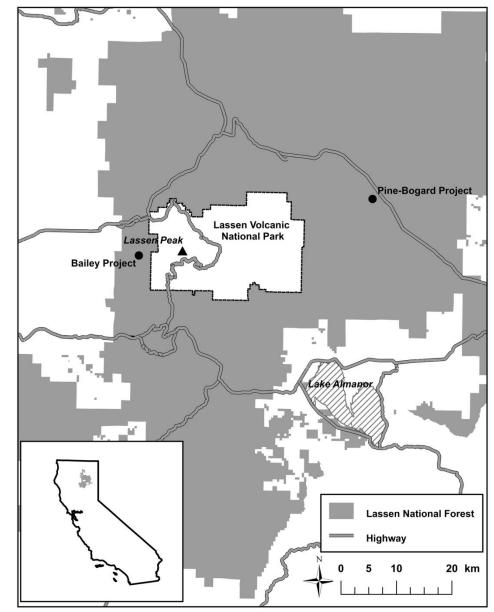
Aquatic Ecosystem Response to Timber Harvesting for the Purpose of Restoring Aspen

Bobette E. Jones, Monika Krupa 🖾, Kenneth W. Tate

Published: December 20, 2013 • DOI: 10.1371/journal.pone.0084561

Article	About the Authors	Metrics	Comments	Related Content	Download P	DF 🚽
*					Print	Share
 Abstract Introduction 	Abstract				() CrossMark	
Materials and Methods	The removal of c	onifers through commerci	al timber harvesting has be	en successful in restoring	Subject Areas	?
Results and Discussion	aspen, however	many aspen stands are lo	ers through commercial timber harvesting has been successful in restoring by aspen stands are located near streams, and there are concerns about			
Conclusions		ecosystem impairment. W	Conifers			
Supporting Information		removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003–2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project				
Acknowledgments	(2003–2010) invo					
Author Contributions		consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of		Pines		
References	one treatment ad	Solar radiation				
Reader Comments (0)	analyzed for NO	₃ -N, NH ₄ -N, and PO ₄ -P at	Pine, Bogard, and Bailey	Creeks were below the	Solid-phase extra	action
Figures	concentrations (N	NO ₃ -N, NH ₄ -N, PO ₄ -P, K,	Illy elevated PO ₄ -P in Boga and SO ₄ -S) showed little v ited annual variation, but th	Timber		
	and across years	s. Furbidity and 153 exhib	neu annuai vanation, but ti	iere was no significant	Turbidity	

				plos.org c	create account	sign in
	Subject Areas	For Authors	About Us	Searc	:h	O.
					a	dvanced search
GOPEN ACCESS 💋 PEER-REVIEWED				1,912 VIEWS	7 SAVES	15 SHARES


Aquatic Ecosystem Response to Timber Harvesting for the Purpose of Restoring Aspen

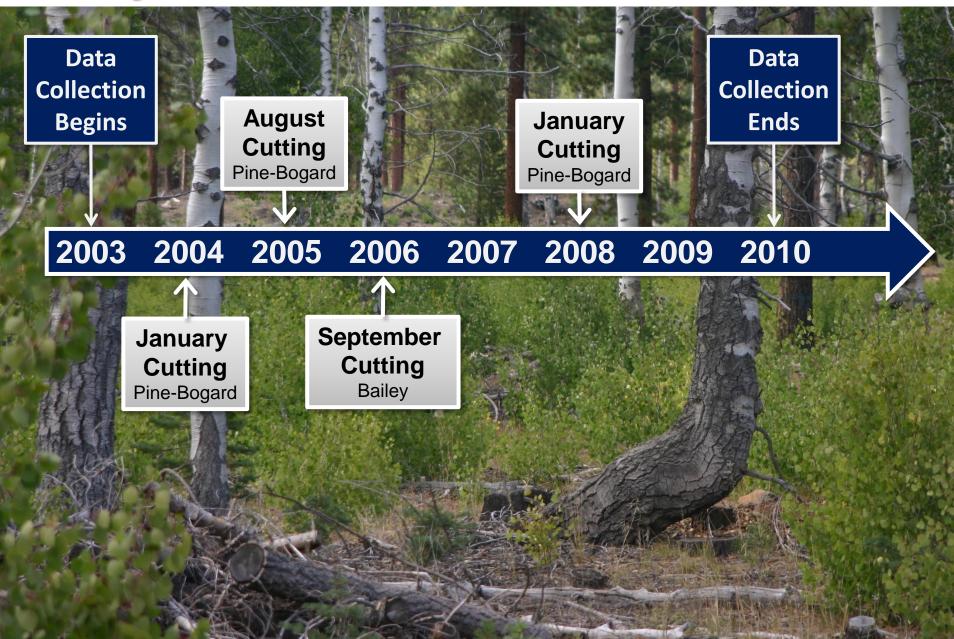
Bobette E. Jones, Monika Krupa 🖾, Kenneth W. Tate

Published: Decemb		Number	pad PDF 🔫
*	Figures	10	Share
 Abstract Introduction Materials and Meth 	Tables	8	lark Areas ?
Results and Discus Conclusions Supporting Informa	Supplemental Figures	15	ns ja
Acknowledgments Author Contribution References	Supplemental Photos	10	ation
Reader Comments Figures	References	107	se extraction
rigaros	and across years. Turbidity and TSS exhibited annual variation, but there	was no significant	, inv

Study Sites

2 Sites, 4 Treatments (Cuttings)

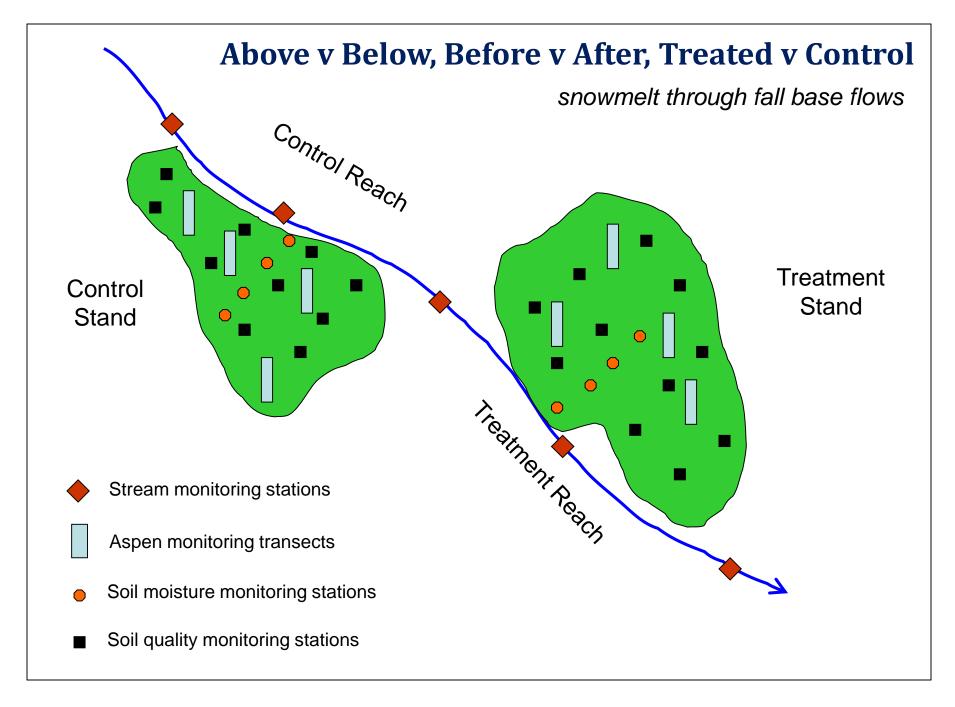
Pine-Bogard Creeks

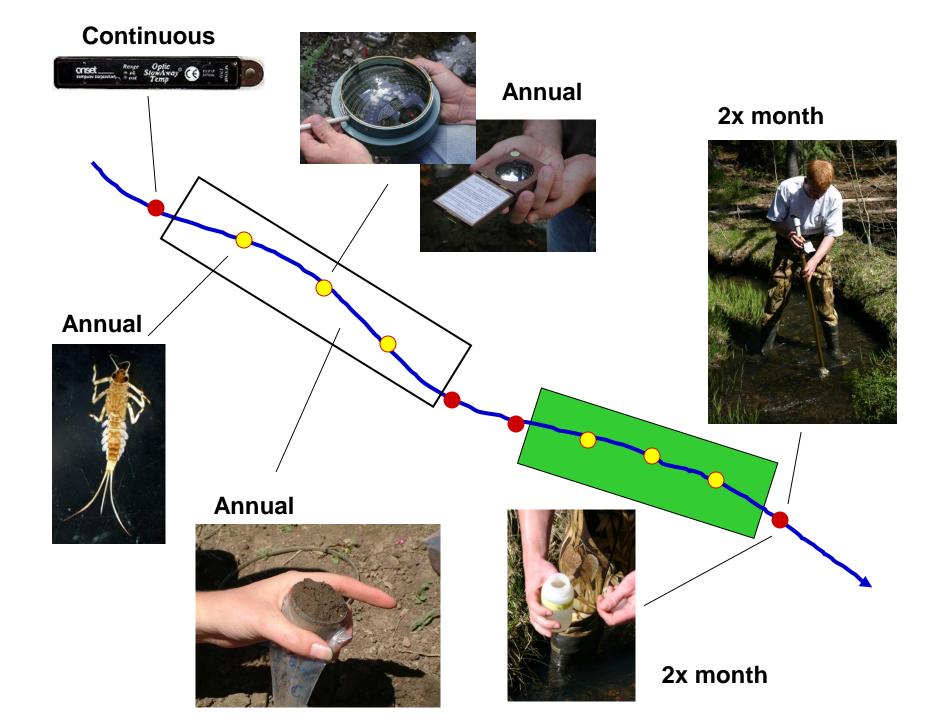

- Jan 2004 Phase 1 Aug 2005 – Phase 2
- Jan 2008 Phase 3

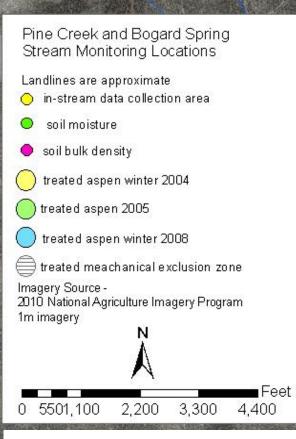
Bailey Creek

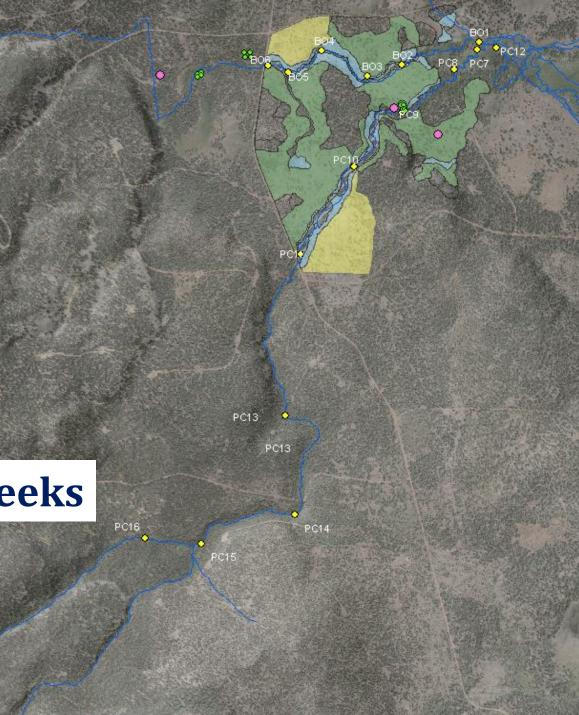
Sep 2006

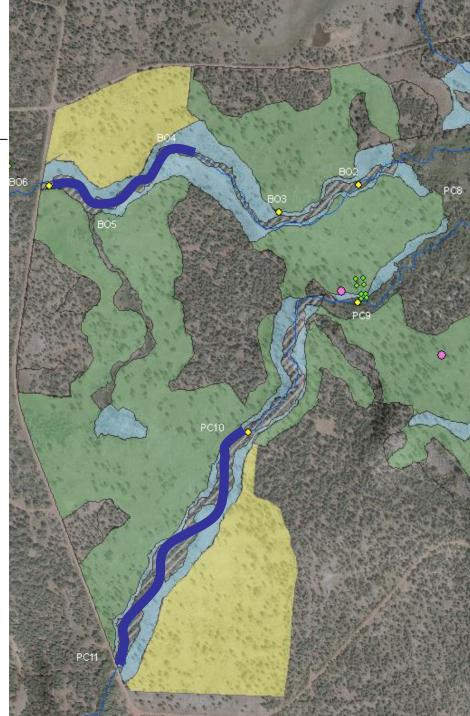
Study Timeline




Response Metrics


- Water Quality
- Stream Canopy Cover and Solar Radiation
- Stream Temperature
- Aquatic Macroinvertebrates
- Soil Bulk Density
- Soil Moisture




Pine & Bogard Creeks

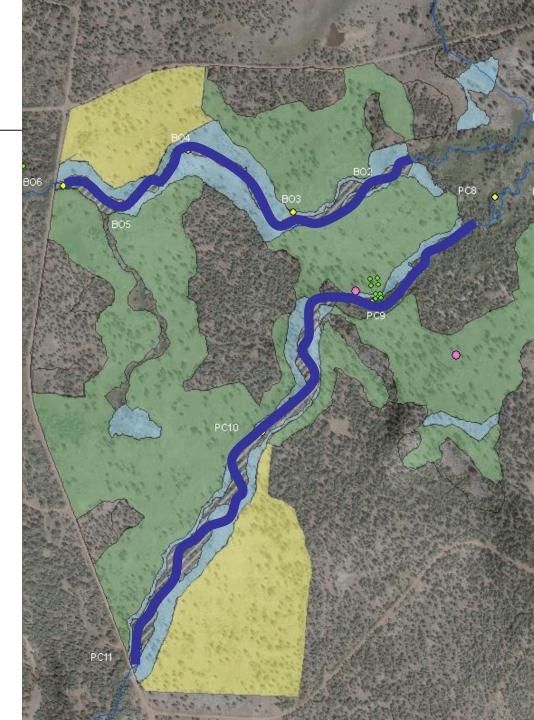
Jan 2004 Treatment (yellow)

- ~24 ha, Pine Cr. 720 m, Bogard Cr. 430 m.
- Over snow, min 60 cm snow or
 10 cm frozen ground
- Whole tree (< 75 cm DBH)
- < 25 m from stream hand felled and end-lined out.
- > 25 m from stream used tracklaying harvester, skidders.

Jan 2004 Treatment

88

Jan 2004 Treatment (photo taken spring 2004)

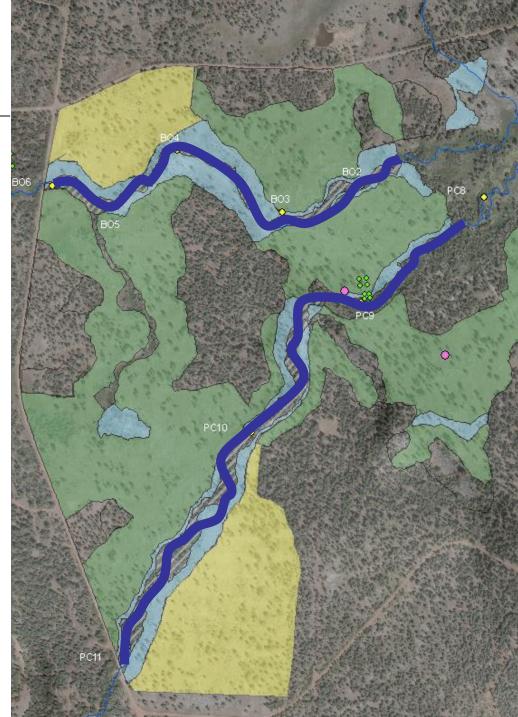

Left side post treatment

Right side post treatment

Bogard Creek- located 100 ft right of treatment boundary

Aug 2005 Treatment (green)

- 80 ha, Pine Cr. 1,800 m, Bogard Cr. 1,090 m.
- Late harvest dry soils, further reduce slash
- Whole tree (< 75 cm DBH)
- Variable min distance from stream based on slope, ground cover – 4 to 40 m.
- Track-laying harvester, skidders.



Aug 2005 Treatment

Jan 2008 Treatment (blue)

- 13 ha, Pine Cr. 1,800 m, Bogard Cr. 1,090 m.
- Over snow, whole tree (<75 cm DBH)
- No equipment zone from waters edge to edge continuous vegetation.
- Conifers in no equipment zone and not contributing to streambank stability were felled and lifted out.

Snow depth during Jan 2008 treatment

Bogard Creek following Jan 2008 treatment (photo taken early Spring 2008)

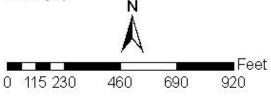
Bailey Creek

Bailey Creek Stream Monitoring Locations

BR6

BRS

Landlines are approximate


😑 in-stream data collection area

😑 soil moisture

😑 soil bulk density

) treated aspen 2007

Imagery Source -2010 National Agriculture Imagery Program 1m imagery

Sep 2006 Treatment

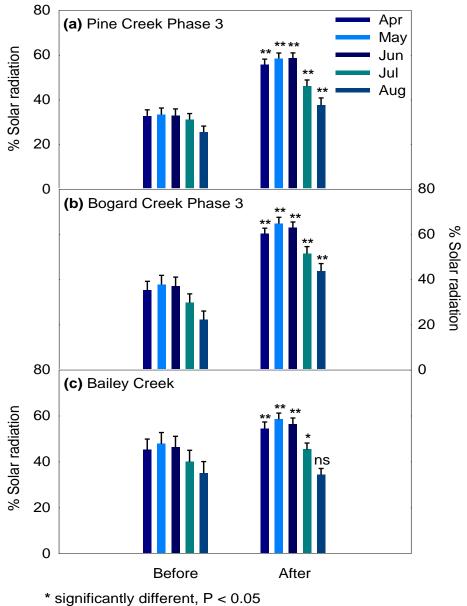
- ~4.5 ha, Bailey Creek
 560 m.
- Late harvest dry soils
- Whole tree (10 75 cm DBH).
- Variable distance from stream based on slope, ground cover – 1.5 to 90 m.
- Track-laying harvester, skidders.
- <10 cm DBH were cut, pilled, and burned outside aspen clone root zone.

Stream water quality changes between up and down stream sites after conifer removal.

No water quality changes were detected

- Means (mg/L) for all samples collected across treatment stream sample stations.
- NO₃-N background is 0.005 to 0.04, eutrophication concerns if >0.3 mg/L.
- PO₄-P eutrophication concerns if >0.05 mg/L.
- Overall extremely clean water.

Creek	No. Samples Collected	Nutrient	No. Samples < DL ^a	% Samples < DL ^a	Mean of all Samples	Mean of all Samples > DL ^a
		NO ₃ -N	636	84	0.007	0.03
Pine	758	NH ₄ -N	753	99	0.027	0.26
		PO ₄ -P	651	86	0.01	0.04
	430	NO ₃ -N	348	81	0.008	0.03
Bogard		NH ₄ -N	432	99	0.026	0.47
		PO ₄ -P	63	15	0.04	0.04
Bailey	315	NO ₃ -N	272	86	0.005	0.02
		NH ₄ -N	293	93	0.030	0.09
		PO ₄ -P	311	99	0.005	0.04

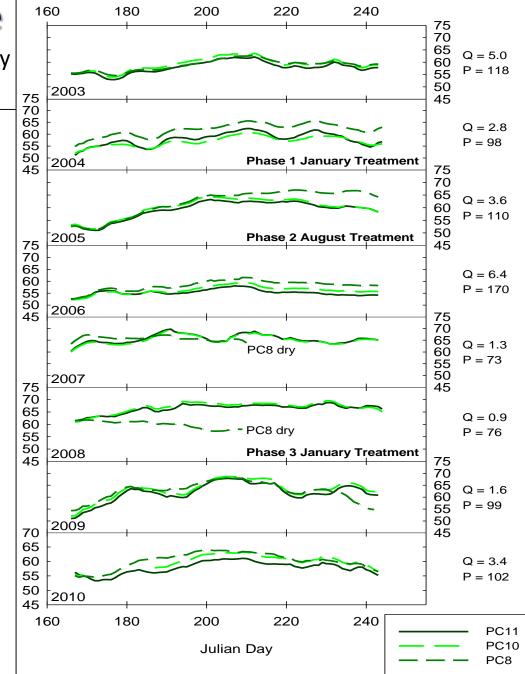

^a DL = Detection Limit

Stream canopy cover and solar input changes in treatment reaches following conifer removal.

Stream Solar Radiation Input

- Canopy cover significantly decreased in response to Pine-Bogard Jan 2008 and Bailey treatments.
- Solar radiation significantly increased in response to Pine-Bogard Jan 2008 and Bailey treatments.
- There was no response of canopy cover or solar radiation to other treatments.

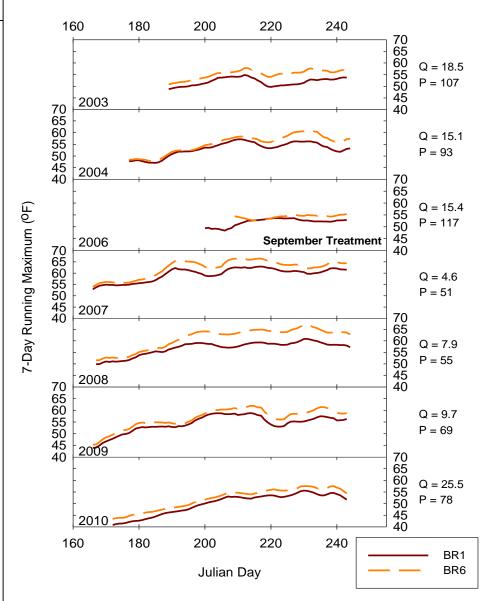
^{**} significantly different, P < 0.005


Stream temperature changes between up and down stream sites after conifer removal.

Stream Temperature

Pine Creek seven day running average daily maximum water temperature

- These was no increase (or change) in rate of water warming through treatment stream reaches.
- Annual stream temperature primarily driven by annual fluctuations in discharge, with the warmest stream temperature occurring during the lowest flow years.



Stream Temperature

There are several possible reasons for the lack of response:

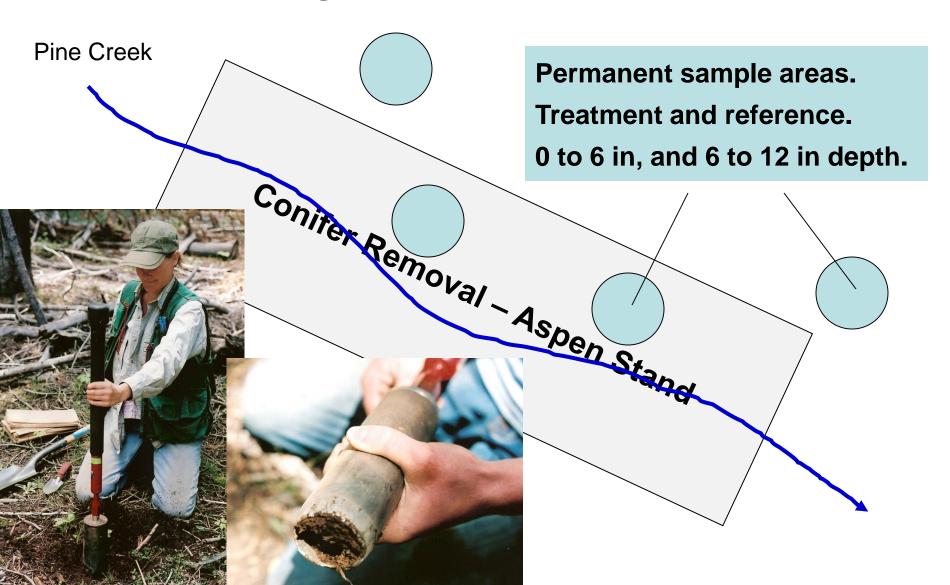
- The decrease in canopy cover was small Pine and Bailey Creeks (9% and 7% decrease, respectively).
- Still a substantial canopy cover at Pine Creek (55%), Bogard Creek (39%), and Bailey Creek (45%) to continue to moderate stream temperature.
- At Bailey Creek, stream temperature change is likely buffered by the relatively high, cool flows that characterize the creek all season-long.
- It is likely that the affected reach lengths at each creek were not long enough to allow for a water residence time that could result in increased temperatures.

Bailey Creek seven day running average daily maximum water temperature

Aquatic Macroinvertebrates

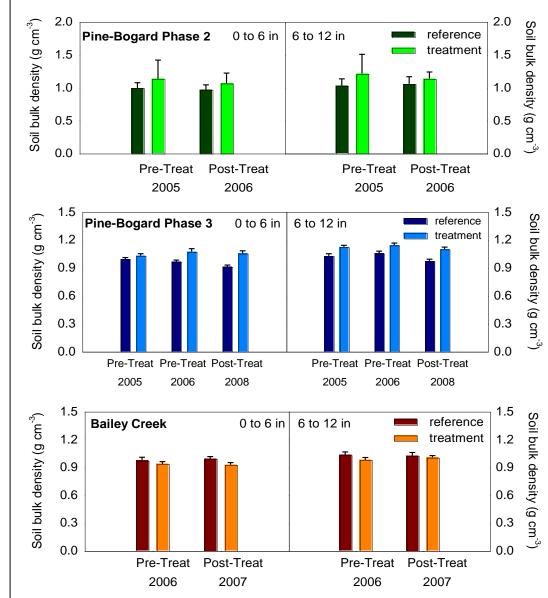
		2003		20	10
		Above	Below	Above	Below
Pine	Richness	17	16	26	21
	Diversity	2.3	2.4	1.8	1.8
	% Tolerant	0.2	0	0.1	0
Bogard	Richness	17	12	22	23
	Diversity	2.8	2.0	2.7	2.3
	% Tolerant	0	0	0	0
Bailey	Richness	11	13	21	17
	Diversity	2.0	2.3	2.8	2.9
	% Tolerant	0	0	0	0

Water Scavenger



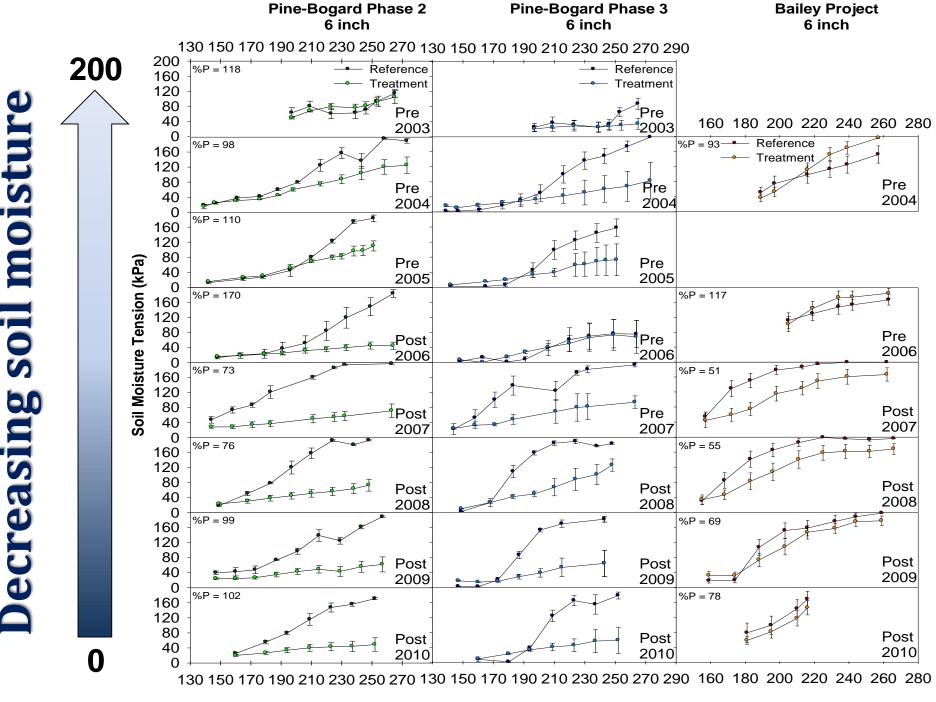
ihwater ussel Dobsonfly or Fishfly Larva

Soil Compaction - Bulk Density


Test for change before and after conifer removal

Soil Bulk Density

- There were no significant difference between treatment and reference soil bulk densities at the 0-6 or 6-12 inch depths for any treatments at Pine, Bogard, or Bailey Creeks.
- Soil bulk density monitoring stations were located in harvest unit areas outside of defined skid trails and log landings.


Mean and standard error of soil bulk density for treatment and reference aspen stands before and after treatments

Soil Moisture

- Post treatment soil moisture at 6 and 18 inches increased significantly relative to reference soil moisture in response to
 Pine, Bogard, and Bailey
 Creek treatments (P < 0.001).
- Increased soil moisture within treatment units was likely from reduced transpiration.

Julian Day Julian Day

Julian Day

Conifer removal to restore riparian aspen stands:

- i. had no effect on water quality or aquatic macroinvertebrates
- ii. had no effect on soil bulk density but did cause a significant increase in soil moisture
- iii. decreased canopy cover and increased solar radiation following the Bailey Project and following Phase 3 of the Pine-Bogard Project, but did not influence stream temperature.

Rangeland Watershed Laboratory http://rangelandwatersheds.ucdavis.edu

rangeland watersheds