Modeling Probability of Ignition & Fire Severity Across The Mojave Ecoregion

Emma Underwood UC Davis, Department of Environmental Science & Policy Robert Klinger, Matt Brooks US Geological Survey, Western Ecological Research Center Yosemite Field Station Randy McKinley US Geological Survey Earth Resources Observation Systems Center

Rationale

- Ecological
 - Landscape scale extension of the vegetation dynamics analyses
 - Identify areas where vegetation transitions are most likely to occur
- Management
 - Inform long-range planning and land use

Integrated Multi-Scale Project

Approach

- Two components
 - Probability of ignition
 - Severity
 - dNBR

Ignition

• Aim

- Predict the likelihood for ignition across the ecoregion
- Model structure
 - "Presence-Absence" or Incidence-only model?
 - We knew where fire had occurred from 1972 – 2010
 - Fires > 405 ha
 - We could *not* be sure where fire had *not* occurred
 - Fires < 405 ha (1984 2010)
 - Fires prior to 1971

Ignition

- Decision
 - Incidence only model
- Model structure
 - "Presence-Absence" or Incidence-only model?
 - We knew where fire had occurred from 1972 – 2010
 - Fires > 405 ha
 - We could *not* be sure where fire had *not* occurred
 - Fires < 405 ha (1984 2010)
 - Fires prior to 1971

Decision

- Incidence-only ("single-class") model
 - Maximum Entropy algorithim suitable where only presence data (no absence data)
 - Extremely sound theoretical foundation

Methods

- Generated 10,000 points within burns (>1000 acres)
- Predict suitability relative to "background" sample of environmental variables
- Converts relativized frequency to "logistic "(0-1 scale...sort of)
- Shift in interpretation though
 - Not likelihood *per se*
 - Relative suitability

Maxent Predictor Variables

Climate	Soil &	Vegetation	New Data
(1949-2005)	topography	& NDVI	
- Temp: mean - Precip: annual	- Aspect - Slope - PRR - Rugged terrain	 Vegetation % tree cover NDVI peak Inv Annuals SDM 	- Neg Lightning Str. (10, 100, 1000 km2 - Pos Lightning Strl (10, 100, 1000km2 -Road density

Performance of Maxent Model

Spatial Modeling of Ignition Probability

Relative Performance of Variables

Key variables for Ignition Suitability

≥USGS

Annual precipitation 0.60 0.55 (a) 0.50 0.45 0.45 0.45 0.35 0.35 0.30 0.20 0.20 0.20 0.10 0.05 0.00 0 100 200 300 400 500 600 700 ppt_ann

ativo Lightning Strikos (1000km²)

So If A Patch Of Ground **DOES** Burn...

• What is the likely level of severity?

- dNBR = measure of burn severity
 - Biomass loss more ecologically relevant than coarse measure of mortality

- Factors likely related to burn severity include:
 - Climate
 - Topography
 - Fuels

- Factors related to burn severity include:
 - Climate
 - Winter precipitation
 - Monsoon precipitation
 - Mean maximum July temperature
 - r = 0.983 mean minimum
 January temperature

- Factors related to burn severity include :
 - Topography
 - Elevation
 - Slope
 - "Hillshade"
 - "Ruggedness"
 - Photosynthetically active radiation

- Factors related to burn severity include :
- <image>

- Fuels
 - NDVI
 - Bromus spp. (SDM's)
 - Schismus barbatus (SDM's)

Model Calibration & Selection

- Training
 - N = 45,183 random points
 - N = 239 fires
- Poisson process

Maxent Predictor Variables

Climate (1949-2005)

- Temp: mean July maximum

- Precip: annual *Mean winter Mean monsoon* Soil & topography

- Aspect

- Slope

- PRR

Rugged terrain

- Elevation

- Hillshade

Vegetation & NDVI

- Vegetation

- % tree cover

- NDVI peak

- Inv Annuals SDM

New Data

- Neg Lightning Str.k (10, 100, 1000 km2)

- Pos Lightning Strk (10, 100, 1000km2)

-Road density

Model Calibration & Selection

• Four models

- Some non-linear and some multiplicative effects
- 2. Non-linear additive effects
- 3. Linear and some multiplicative effects
- 4. Linear additive effects
- Informationtheoretic comparison and selection

Model Validation

- Two approaches
 - 10-fold crossvalidation
 - N = 100 replications
 - Independent test set
 - N = 19,364 random points
- Root mean square error

Predictions

- Best model was most complex one
 - Nonlinear and multiplicative terms
- Mean maximum July temperature only variable "not important"
 - 95% Cl's overlapped zero

Prediction Uncertainty

10-Fold Cross-validation N = 100 Replicates

Values

- RMSE from 10x crossvalidation = 93
 - $\approx 8\%$ error
 - MAPE = 70
- *Very* precise RMSE estimates

10-Fold Cross-validation N = 100 Replicates

Values Bandwidth = 0.005294

Prediction Uncertainty

•

□ Observed vs. Predicted dNBR

Independent Test Dataset

OK, this is a very pretty map and all, but...

- How can you meaningfully quantify predicted dNBR for comparisons?
- Want a measure that captures range, rate of change in the range, estimates proportion of values within a given segment of the range, and has a standardized scale
 - Effective comparisons
 - Can be analyzed statistically
- Means, medians and SD's?
 - Nah
- Quantiles?
 - Nah

Empirical Cumulative Distribution Function (ECDF)

Predicted dNBR

Predicted Patterns Subregions

Predicted dNBR (Ecoregion)

Predicted Patterns

National Park Service

Predicted dNBR (Ecoregion)

Predicted Patterns Department of Defense

Predicted dNBR (Ecoregion)

Predicted Patterns

Empirical Cumulative Distribution Functions BLM

Predicted dNBR (Ecoregion)

How Do Predicted Ignition & Severity Line Up?

Ignition

Severity

Interpretation and Application

Interpretation

- Areas predicted to be most suitable for fire starts may not necessarily have large proportion of high severity
- Rare events in low ignition areas may have proportionally high ecological effects
 - Alternative vegetation states
- Application
 - Sensitive/T & E species
 - Near-term land use
 - Longer-term planning
 - Future climate scenarios

